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Abstract: We develop a first-order description of spatio-temporal 
distortions in ultrashort pulses using normalized parameters that allow for a 
direct assessment of their severity, and we give intuitive pictures of pulses 
with different amounts of the various distortions. Also, we provide an 
experimental example of the use of these parameters in the case of spatial 
chirp monitored in real-time during the alignment of an amplified laser 
system. 

© 2007 Optical Society of America 

OCIS codes:  (320.5550) Pulses; (320.7100) Ultrafast measurements. 
 

References and links 

1. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, "Micromachining bulk glass by use of 
femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001). 

2. W. Denk, J. H. Strickler, and W. W. Webb, "Two-Photon Laser Scanning Fluorescence Microscopy," 
Science 248, 73-76 (1990). 

3. R. L. Fork, O. E. Martinez, and J. P. Gordon, "Negative dispersion using pairs of prisms," Opt. Lett. 9, 
150-152 (1984). 

4. J.-C. M. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, "Control and measurement of ultrashort 
pulse shapes (in amplitude and phase) with femtosecond accuracy," Appl. Opt. 24, 1270-1282 (1985). 

5. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbuegel, and D. J. Kane, 
"Measuring Ultrashort Laser Pulses in the Time-Frequency Domain Using Frequency-Resolved Optical 
Gating," Rev. Sci. Instrum. 38, 3277-3295 (1997). 

6. P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, "Highly simplified device for ultra-short measurement," 
Opt. Lett. 26, 932-934 (2001). 

7. S. Akturk, M. Kimmel, P. O'Shea, and R. Trebino, "Measuring spatial chirp in ultrashort pulses using 
single-shot Frequency-Resolved Optical Gating," Opt. Express 11, 68-78 (2003). 

8. S. Akturk, M. Kimmel, P. O'Shea, and R. Trebino, "Measuring pulse-front tilt in ultrashort pulses using 
GRENOUILLE," Opt. Express 11, 491-501 (2003). 

9. C. Dorrer, E. M. Kosik, and I. A. Walmsley, "Spatio-temporal characterization of the electric field of 
ultrashort pulses using two-dimensional shearing interferometry," Applied Physics B (Lasers and Optics) 
74 [Suppl.], S209-S217 (2002). 

10. C. Dorrer, and I. A. Walmsley, "Simple linear technique for the measurement of space-time coupling in 
ultrashort optical pulses," Opt. Lett. 27,  (2002). 

11. K. Varju, A. P. Kovacs, G. Kurdi, and K. Osvay, "High-precision measurement of angular dispersion in a 
CPA laser," Appl. Phys. B Suppl., 259-263 (2002). 

12. M. Kempe, U. Stamm, B. Wilhelmi, and W. Rudolph, "Spatial and temporal transformation of 
femtosecond laser pulses by lenses and lens systems," J. Opt. Soc. Am. B 9, 1158-1165 (1992). 

13. X. Gu, S. Akturk, and R. Trebino, "Spatial chirp in ultrafast optics," Opt. Commun. 242, 599-604 (2004). 
14. A. G. Kostenbauder, "Ray-Pulse Matrices: A Rational Treatment for Dispersive Optical Systems," IEEE 

J. Quantum Electron. 26, 1148-1157 (1990). 
15. S. Akturk, X. Gu, P. Gabolde, and R. Trebino, "The general theory of first-order spatio-temporal 

distortions of Gaussian pulses and beams," Opt. Express 13, 8642-8661 (2005). 
16. R. V. Hogg, and A. Craig, Introduction to Mathematical Statistics (Prentice Hall, 1994). 

#77118 - $15.00 USD Received 15 November 2006; revised 15 December 2006; accepted 18 December 2006

(C) 2007 OSA 8 January 2007 / Vol. 15,  No. 1 / OPTICS EXPRESS  242



17. K. Osvay, A. P. Kovács, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatári, "Angular Dispersion and 
Temporal Change of Femtosecond Pulses From Misaligned Pulse Compressors," IEEE J. Sel. Top. Quant. 
Electron. 10, 213-220 (2004). 

18. L. Cohen, Time-frequency analysis (Prentice Hall, 1995). 
19. Z. Bor, and B. Racz, "Group velocity dispersion in prisms and its application to pulse compression and 

travelling-wave excitation," Opt. Commun. 54, 165-170 (1985). 
20. S. Akturk, X. Gu, E. Zeek, and R. Trebino, "Pulse-front tilt caused by spatial and temporal chirp," Opt. 

Express 12, 4399-4410 (2004). 
 

 

1. Introduction 

Ultrashort-pulse lasers are carefully designed to generate the shortest possible pulses, as this 
is highly desirable in most experimental situations, from micro-machining to multi-photon 
microscopy [1, 2]. Unfortunately, in propagating through materials, different frequencies ω 
experience different group delays τ(ω), so all transmissive optical components broaden and 
chirp pulses. Fortunately, pulse compressors can compensate for this group-delay dispersion 
(GDD) [3]. But, in order to operate, pulse compressors (as well as shapers and stretchers) 
deliberately rely on an array of spatio-temporal distortions, which include angular dispersion, 
spatial chirp, pulse-front tilt, and angular delay, to name a few. While in theory perfect 
alignment of a compressor guarantees that the output pulse is free of any of these distortions, 
in practice residual distortions are often present. 

Fortunately, measurement techniques for temporal chirp have been available for decades 
[4-6], but convenient diagnostics for most spatio-temporal distortions are just now becoming 
available [7-11]. As a result, while pulse chirp is well understood, the various spatio-temporal 
distortions that can occur in ultrashort pulses are not so well understood. Such distortions are 
as detrimental to experiments as chirp, especially when the pulse is focused onto a sample 
[12]. So an understanding of them is critical. And such an understanding must begin with a 
common language with which to discuss them. 

Unfortunately, such a language does not currently exist. Consider, for example, the case 
of spatial chirp. Spatial chirp is a coupling between x and ω and corresponds to a variation of 
the beam center vs. frequency that can be characterized by the derivative dx/dω (called spatial 
dispersion) to first order. But spatial chirp may equally well be described by a variation in the 
center frequency vs. position, and hence the derivative dω/dx (called frequency gradient), and 
these two derivatives are not reciprocal [13]. To further complicate matters, some authors use 
the frequency υ rather than the angular frequency ω [14], and others prefer the wavelength λ. 
As a result, spatial chirp measurements alone can be reported using six different derivatives, 
all with different units. Worse, it is difficult to estimate the severity of spatial chirp from any 
of these quantities, and how much – or how little – it may eventually affect the performance 
of an ultrafast system. The cases of pulse-front tilt, angular dispersion, and angular delay are 
similar. To first order they can be described, respectively, by the derivatives dt/dx, dkx/dω, 
and dkx/dt. Or they can be described by the several additional analogous definitions. Thus 
studies of other spatio-temporal distortions suffer from the same problems. 

In this paper we propose an intuitive formalism to describe spatio-temporal distortions. 
Rather than using first-order derivatives, we rely on normalized correlation parameters that 
we recently introduced in the context of perfect Gaussian pulses and beams [15]. We also 
show that such normalized parameters are well adapted to experimental situations where the 
spatio-temporal distortions of pulses and beams of arbitrary profiles must be minimized in 
real time. 

2. Formal definitions of spatial chirp and other spatio-temporal couplings 

We begin by recalling the formal definitions of the above-mentioned normalized spatio-
temporal couplings that we briefly introduced recently [15] and that are the subject of this 
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paper. We consider first (horizontal) spatial chirp, a coupling in the x–ω domain. 
Generalization to the other spatio-temporal couplings, namely pulse-front tilt, angular 
dispersion, and angular delay, is immediate by considering the x–t, kx–ω and kx–t domains. 
Extension to the y coordinate is also immediate. 

We call I(x,ω) ≡ |E(x,ω)|2 the (spatio-spectral) intensity distribution of the pulse, where x 
and ω are measured with respect to the beam center and the carrier frequency (that is, have 
the mean position and mean frequency subtracted off). The intensity I(x,ω) is normalized such 
that its integral over space and frequency is 1. We now define the normalized spatial chirp 
parameter ρxω as the first mixed moment of I(x,ω), divided by the global beam size Δx and the 
global bandwidth Δω: 
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Analogous quantities can be defined for the other first-order spatio-temporal distortions 

(see section 5). 
This definition of spatial chirp as a linear correlation coefficient is applicable to pulses of 

arbitrary profiles [16], and is consistent with the frequency gradient dω/dx and spatial 
dispersion dx/dω parameters introduced in Ref. 15 for Gaussian pulses, in the sense that: 
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Note that since ρxω is calculated from |E(x,ω)|2, it does not include a coupling between x 

and ω that may appear in the phase of E(x,ω). This coupling essentially amounts to angular 
dispersion [15], and is treated in section 5. 

There are numerous properties of this correlation coefficient that make it an attractive 
choice from a practical point of view: 

 
(1) It is an extension to arbitrary pulses and beams that is consistent with previous 

definitions of frequency gradient and spatial dispersion.  
(2) It is symmetric: when I(x,ω) is recorded using a camera, it does not matter whether 

the position axis is vertical and the frequency axis horizontal, or vice-versa.  
(3) It is scale-invariant: except for a possible change of sign, it is unaffected by the 

transformations x → αx or ω → βω. Thus, beam magnification does not affect the 
result. An important practical implication is that experimental trace need not be 
calibrated: the variables x and ω can represent pixel numbers on a camera, and not 
necessarily physical quantities with proper units.  

(4) It is a dimensionless number. 
(5) Because ρxω can be identified with the linear correlation of the joint distribution 

I(x,ω) [16], it is even possible to show that: 
 

  1 1.
xωρ− < <  (3) 
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(6) Conveniently, ρxω = 0 corresponds to the absence of the distortion to first order, 
while an increased value of |ρxω| indicates an increase in the magnitude of spatial 
chirp (see Fig. 1). 

(7) The sign of ρxω simply reveals whether the beam center position increases or 
decreases with ω.  

(8) Also, for all but near-single-cycle pulses, the change from frequency ω to 
wavelength λ is a linear transformation: λ = -λ0

2ω/(2πc); again, λ is measured with 
respect to the central wavelength λ0. Written in this form, the change from ω (or υ) 
to λ is just a change of scale and sign, and therefore: 

 

  
x x xλ ν ωρ ρ ρ= − = −  (4) 

 
(9) Finally, ρxω is equal to the eccentricity of an elliptical beam caused by spatial chirp. 
 
To see that the last statement is true, consider a collimated beam with an initial circular 

beam profile going through an optical device that introduces spatial chirp in the x direction 
(for example, a misaligned stretcher). We take the input beam to have the same size in the x 
and y directions: Δx = Δy. Because of spatial chirp, the size of the output beam in the x 
direction increases to Δx’. The output beam is therefore elliptical, and can be characterized by 
its eccentricity exy: 
 

 
2 2

2 2
1 1 , 0 1

' '
xy xy

y x
e e

x x

Δ Δ
= − = − ≤ <

Δ Δ
 (5) 

 

 
 

Fig. 1. Profiles of an ultrashort pulse with increasing amounts of spatial chirp, and hence with 
increasing values of ρxω. Upper row: spatio-temporal profiles. The pulses have a central 
wavelength of 480 nm, and 35 nm of bandwidth. Lower row: corresponding profiles of I(x,ω), 
from which ρxω is calculated. (a) ρxω = 0.00. (b) ρxω = 0.30. (c) ρxω = 0.60. (d) ρxω = 0.90. 

 
Comparing Eq. (5) with Eq. (45) in Ref. 15, we see that |ρxω| = exy. Although it is easy and 

intuitive to think of ρxω in terms of the eccentricity of the spatial profile, for precise 
measurements it is preferable to rely on ρxω obtained from the intensity distribution I(x,ω). In 
addition, note that if spatial chirp results in a spatial broadening of the beam, and therefore in 
an elliptical beam, it also results in a temporal broadening of the pulse, because of the 
decrease of available bandwidth at each point x in the beam. Thus, in the presence of spatial 
chirp, the duration of a pulse with a flat spectral phase does not reach its Fourier limit, as can 
be clearly seen on Fig. 1(d). 
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As a side note we would like to point out that the correlation parameter ρxω – and more 
generally any correlation coefficient ρ that appears in this paper – is very sensitive to small 
amounts of spatio-temporal coupling, but saturates to a near-unity value for extremely large 
amounts of coupling (this situation is explored in more details in section 5). 

3. Experimental determination of ρxλ and ρyλ 

We now present a simple arrangement (Fig. 2) that we used to measure the intensity 
distributions I(x,λ) and I(y,λ), and we show how to calculate ρxλ and ρyλ from experimental 
data. 

The beam under test is first dispersed in the horizontal plane by a diffraction grating G1, 
and the diffracted order m1 = 1, focused by a cylindrical lens, illuminates a digital camera. 
Simultaneously, the specular reflection (m1 = 0) from G1 is sent onto a second grating G2 that 
disperses the beam vertically in a Littrow configuration so that all the beams of interest are 
contained in the same horizontal plane; the first order (m2 = -1) of G2 is focused by a second 
cylindrical lens and illuminates the same digital camera. By blocking the order m1 = 1 from 
G1, the camera records I(x,λ), while by blocking the order m1 = 0, the camera records I(y,λ). 
 

 
Fig. 2. Apparatus used to record I(x,λ) and I(y,λ). G1 diffraction grating (dispersing in plane); 
L1 cylindrical lens (collimating in plane); G2 diffraction grating (in Littrow, dispersing out of 
plane); L2 cylindrical lens (collimating out of plane). 

 
Once the two images have been recorded, extracting the parameter ρxλ and ρyλ from I(x,λ) 

and I(y,λ) is a direct application of Eq. (1), as long as the integrals are replaced by discrete 
sums. As stated in section 2, it is not necessary to calibrate the axes of the digital camera: x, y 
and λ can simply refer to pixel numbers. Additionally, we use the fact that the wavelength 
axis can be either horizontal or vertical. However, Eq. (1) does require that the function I(x,λ) 
be centered with respect to its axes. When pixel numbers are used, this is never the case, and 
therefore it is easier to rewrite Eq. (1) in the case of un-centered, discrete distributions. To do 
so, we first introduce the moments μpq of the intensity distribution I(x,λ): 
 

  
,
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λ
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The spatial chirp parameter ρxλ is then computed using the following equation, which is a 

convenient form of Eq. (1) that does not require the data I(x,λ) to be centered: 
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Note that some devices are able to detect spatial chirp without the complete measurement 
of I(x,λ) [7]. In that case the spatial chirp parameter ρxλ may be calculated using Eq. (2) 
instead. 

Because Eq. (7) involves sums on the entire image, it is likely to include various 
background effects, such as scattered light or thermal noise, that might affect the recorded 
image, in particular in regions where the intensity I(x,λ) is low. To mitigate these effects, it is 
desirable to apply a threshold to I(x,λ) before calculating ρxλ, by setting to 1 any values of the 
intensity that are above a pre-defined threshold, and setting the others to 0 (see Fig. 3 for an 
example). As a simple alternative, it is possible to let the camera saturate a large portion of 
the trace, and only retain the saturated values (i.e., setting non-saturated values to zero) before 
applying Eq. (7). We found both methods to be consistent and equivalently robust to noise, 
and numerical simulations show that they yield the same result as a direct application of Eq. 
(7). 

In summary, Eq. (6) and (7) are a simple, efficient and robust method to calculate ρxλ. This 
procedure is extremely well adapted to data-processing computer programs like MATLAB, 
and allows easy monitoring of the spatial chirp in real time during the alignment of complex 
ultrafast laser systems. 

4. Experimental results 

We applied this method to monitor spatial chirp as we aligned a mode-locked Ti:Sapphire 
laser with an external pulse compressor seeding a chirped-pulse amplifier (CPA). The 
apparatus was set up as described above, and images were captured by a 1024×728 Firewire 
digital camera (Sony XCD-710) directly in MATLAB where the parameters ρxλ and ρyλ were 
calculated and displayed in real time. 

 
Fig. 3. Typical raw experimental data obtained during real-time monitoring of a Ti:Sapphire 
oscillator and its external prism pulse compressor, showing the parameters ρxλ (top row) and ρyλ 
(bottom row) obtained after applying a threshold on the measured images. (a) Oscillator output 
before the external pulse compressor. (b) External pulse compressor output, misaligned in the 
vertical plane. (c) External pulse compressor output, adjusted in the vertical plane. 

We should point out that, in this work, we chose to monitor spatial chirp as an example; of 
course, it is well known that spatio-temporal distortions from a stretcher or a compressor arise 
from residual angular dispersion [17]. However, as the pulse emerging from these devices 
propagates in free space, angular dispersion results in spatial chirp, and minimizing spatial 
chirp in the far field amounts to minimizing residual angular dispersion. 
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To ensure a proper alignment of the gratings and cylindrical lenses in the setup, we used a 
reference pulse that was spatially filtered using a single-mode fiber. We then monitored the 
values of spatial chirp along x and y as we aligned the system (Fig. 3). Table 1 shows typical 
values of spatial chirp that we found during this procedure. A misaligned stretcher exhibits 
typical values of ρ = 0.50–0.60, and occasionally values as high as 0.80 or 0.90. Realignment 
of a retro-reflector inside the unit brought ρ to values typically below 0.20. Even smaller 
values are obtained after amplification and re-compression, which we attribute to the spectral 
clipping that happens in our compressor unit. During these alignment procedures, beam 
pointing changes resulted in deviations of ρxλ on the order of 0.01, which can be roughly 
considered as the experimental detection limit of our setup. 
 

Table 1. Typical values of spatial chirp measured in different ultrafast 
optical systems.  

 
Laser system |ρxλ| |ρyλ| 
Ti:Sapphire oscillator (spatially filtered) <0.01 <0.01 
Ti:Sapphire oscillator <0.05 <0.05 
Ti:Sapphire oscillator (with an external pulse compressor) 0.05–0.10 0.05–0.10 
Misaligned pulse stretcher in a CPA 0.20–0.50 ~0.60 
Realigned pulse stretcher in a CPA 0.20 <0.01 
CPA output pulse (stretched, amplified, recompressed) 0.05–0.20 0.05–0.20 

 

5. Analogy with pulse broadening in dispersive media and extension to other spatio-
temporal distortions 

There is a perfect analogy between the effects due to dispersion, and those due to spatio-
temporal distortions. The first-order cause of pulse broadening due to dispersion is often 
characterized by the group-delay dispersion, dτ/dω, although this can also be considered as a 
temporal variation of the instantaneous frequency ωinst at a constant rate dωinst/dt. In analogy 
with Eq. (2), it is possible to define a temporal chirp parameter ρωt, normalized by the pulse 
duration Δt and the bandwidth Δω, and that satisfies: 
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The temporal chirp parameter ρωt can also be defined in a form similar to Eq. (1) by 

considering the Wigner distribution of the pulse IW(ω,t). As an example, consider a chirped 
Gaussian pulse with a bandwidth Δω and a group-delay dispersion dτ/dω: 
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The Wigner distribution of this pulse is given by [18]: 
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Note the presence of the coupling term t − (dτ/dω)ω, whose ω-dependent term becomes 
important when dτ/dω  ≠ 0 (i.e., ρωt ≠ 0), and which is similar to the coupling term, x 
− (dx/dω)ω, that arises in the case of spatial chirp (ρxω ≠ 0). 
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It is very instructive to consider the relation between ρωt and the pulse duration Δt because 
dispersion effects are easily and intuitively interpreted in the time domain. Figure 4(a) shows 
the dependence of the pulse duration (normalized to its Fourier limit) with ρωt. It is obvious 
that the parameter ρωt is very sensitive to small amounts of dispersion: a value of ρωt = 0.30 
corresponds to a pulse stretched by only 5%, which is acceptable in many situations. On the 
other hand, very large stretching ratios, such as those obtained by pulse stretchers in CPA 
systems, correspond to values of ρωt very close to 1, and rapidly become indistinguishable. 
Thus, these correlation coefficients are ideal for monitoring ultrafast systems that must 
approach the Fourier limit, but less than ideal for cases in which one is deliberately 
attempting to introduce massive amounts of these distortions.  

In this respect, it is also interesting to compare the normalized parameters that we 
introduce here with another normalized parameter that was proposed for the study of spatio-
temporal distortions in general: the degree of spatio-temporal uniformity μ [10]. This 
parameter is calculated from the spatially and spectrally resolved electric field amplitude: 
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The degree of spatio-temporal uniformity μ may be measured experimentally using linear 

techniques, and it describes all possible spatio-temporal couplings, which can be convenient 
in some cases: μ = 1 corresponds to a pulse free of spatio-temporal distortions, while 0 < μ < 
1 indicates that some distortions are present. However, the parameter μ is not very sensitive to 
small amounts of spatio-temporal distortions. As shown in Fig. 4(b) in the case of spatial 
chirp, there is little change in μ in the region of small distortions (ρxω ≈ 0).  

  

 
Fig. 4. (a) Normalized temporal chirp parameter ρωt as a function of pulse broadening. Because 
pulse-front tilt also results in pulse broadening, this curve can also represent ρxt, as well as ρxω 
if pulse broadening is replaced by beam magnification along x. (b) Numerical simulations of 
the degree of spatio-temporal uniformity μ as a function of the spatial chirp parameter ρxω in 
the case of a Gaussian beam. 

 
Due to the analogy between spatial and temporal chirp, it seems logical to impose 

equivalent tolerances on ρωt and ρxω. In practice, |ρ| ≤ 0.30 or 0.40 seems a reasonable 
condition to aim for. These considerations are also valid for the parameters ρxt, ρkω and ρkt, 
which can be used to measure pulse-front tilt, angular dispersion, and angular delay, 
respectively, as long as the intensity distributions I(x,t), I(kx,ω) and I(kx,t) are known: 
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At least to some extent, all of these spatio-temporal distortions are present at the same 

time in real pulses. It is an experimental challenge to control all these distortions, especially 
considering the fact that they are often entangled. Pulse-front tilt, for example, can be caused 
by angular dispersion [19] or simultaneous spatial and temporal chirp [20]. In the latter 
scenario, it is possible to derive an exact expression for pulse-front tilt in the ideal case of 
Gaussian pulses and beams: dt/dx = (dτ/dω)·(dω/dx). This formula can be expressed in terms 
of normalized ρ-parameters as well: ρxt = ρxω·ρωt (see Fig. 6 for an example). For more 
complex pulses however, closed-form expressions for relationships between spatio-temporal 
distortions become difficult to establish, and from a practical point of view it is preferable to 
aim at maintaining all the various ρ-parameters below a certain threshold (e.g., 0.30) that 
eventually depends on the overall spatio-temporal pulse quality that is sought. 
 

 
Fig. 5. Temporal profiles of an ultrashort pulse with increasing amounts of positive temporal 
chirp, and hence with increasing values of ρωt. The pulses have a central wavelength of 480 
nm, and 35 nm of bandwidth. (a) ρωt = 0.00 (transform limit). (b) ρωt = 0.30 (5% broadening). 
(c) ρωt = 0.60 (25% broadening). (d) ρωt = 0.90 (130% broadening). 

 

 
Fig. 6. Spatio-temporal profiles of an ultrashort pulse with increasing amounts of temporal and 
spatial chirp, and hence with increasing values of ρxt. The pulses have a central wavelength of 
480 nm, and 35 nm of bandwidth. (a) ρxt = 0.00. (b) ρxt = 0.30. (c) ρxt = 0.60. (d) ρxt = 0.80. 

 
Finally, we would like to point out that the ρ-parameters also seem to offer the possibility 

to describe spatio-temporal distortions beyond the first order, such as chromatic aberrations in 
lenses, or pulse-front curvature, by considering higher-order cross moments μpq of the 
relevant intensity distributions. 
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6. Conclusions 

We have presented an intuitive description of various spatio-temporal distortions in terms of a 
set of normalized correlation coefficients. Spatial chirp, pulse-front tilt, angular dispersion 
and angular delay, and also temporal chirp, can all be described to first order by 
dimensionless parameters that vary in the range [-1,1] and readily indicate the severity of 
these distortions. These parameters are especially sensitive to small amounts of distortion. We 
also presented a simple, practical apparatus allowing the real-time monitoring of the 
corresponding spatial-chirp parameters ρxλ and ρyλ,. We believe that these parameters will help 
better understand spatio-temporal distortions and their consequences, and will be used as a 
benchmark enabling the comparison of the performance of ultrafast lasers. 
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