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Pulse train instabilities have often given rise to confusion and misinterpretation in ultrafast pulse characterization
measurements. Most prominently known as the coherent artifact, a partially mode-locked laser with a non-periodic
waveform may still produce an autocorrelation that has often been misinterpreted as indication of a coherent pulse
train. Some modern pulse characterization methods easily miss the presence of a coherent artifact, too. Here, we
address the particularly difficult situation of a pulse train with chirp-only instability. This instability is shown to
be virtually invisible to autocorrelation measurements, but can be detected with frequency-resolved optical gating,
spectral phase interferometry for direct electric-field reconstruction, and dispersion scan. Our findings clearly
show that great care is necessary to rule out a chirp instability in lasers with an unclear mode-locking mechanism
and in compression experiments in the single-cycle regime. Among all dynamical pulse train instabilities analyzed
so far, this instability appears to be the best-hidden incoherence and is most difficult to detect. © 2019 Optical

Society of America

https://doi.org/10.1364/JOSAB.37.000074

1. INTRODUCTION

In the past two decades, numerous techniques have been devel-
oped for the full characterization of the intensity and phase
of ultrashort pulses [1–6]. Compared to the more traditional
second-order autocorrelation measurement [7], full characteri-
zation methods not only deliver precise pulse durations, but
they can also resolve the pulse shape, i.e., structure in the tempo-
ral or spectral intensity and phase of potentially complex pulses
[8,9]. However, most such techniques operate multi-shot, so
they inherently assume stability of the pulse shape in the pulse
train. Worse, there is no “pulse-shape stability meter,” so the
task of determining the pulse-shape stability also necessarily falls
to the pulse-measurement technique. If the pulse intensity or
phase varies on a time scale shorter than the measurement time,
a misleading narrow temporal structure arises in such a mea-
surement that is commonly referred to as the “coherent artifact,”
first pointed out by Fisher and Fleck for intensity autocorrela-
tion [10] and recently studied in detail for modern methods by
Rhodes et al. [11–13]. This coherent artifact is effectively the
autocorrelation of the transform limit

χ(t)=
∫
∞

0
〈Ẽ j (ω)Ẽ ∗k (ω)〉 j=k exp(iωt)dω. (1)

Here, Ẽ j (ω) is the oscillating electric field (i.e., without slowly
varying envelope approximation) of the j -th pulse in the train,
and 〈· · · 〉 refers to ensemble averaging.χ(t) relates to the pulse-
to-pulse coherence, which can be described by [14]

0(ω)=
〈Ẽ j (ω)Ẽ ∗k (ω)〉 j 6=k

〈Ẽ j (ω)Ẽ ∗k (ω)〉 j=k

. (2)

In the situation of a strongly degraded pulse-to-pulse coherence
(0(ω)much smaller than unity), intensity autocorrelations tend
to measure the coherent artifact. In the worst-case scenario of a
multimode continuous-wave laser, one measures the autocor-
relation of χ(t), i.e., the coherent artifact, even though there is
no mode-locking mechanism present [15–17]. In the situation
of partial mode locking, one observes a coherence spike on top
of the autocorrelation of an embedding pulse structure [18]. In
particular, a degraded interpulse coherence appears difficult or
even impossible to detect. Additional measurements of the radio
frequency spectrum of the pulse train are common, but this is
more appropriate for simple pulse-energy fluctuations and does
not indicate the detailed pulse-shape fluctuations that can occur.
Otherwise, continuously operating multimode lasers can be
erroneously interpreted as being mode locked [16]. Indeed, the
situation of irregular bursts of short pulses can be difficult to
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detect in autocorrelations when the durations of the coherent
artifact and the actual pulse autocorrelation function are within
an order of magnitude [11,18]. A similar loss of coherence may
affect pulse compression experiments, in particular when aim-
ing for single-cycle pulse duration [19,20]. Here, pulse-to-pulse
coherence may be degraded during the extremely nonlin-
ear spectral broadening process that is necessary to provide
sufficient bandwidth to host such a short pulse.

For the situation of irregular bursts of short pulses, the
coherent-artifact problem can be detected by some, but not
all, full characterization methods. Frequency-resolved optical
gating (FROG) has proven adept at revealing the different
types of instabilities studied so far [11–13]. Discrepancies
between the measured and retrieved FROG traces reliably indi-
cate an unstable pulse train [11,18]. This is due to the unique
relationship between a field and its FROG trace (up to trivial
ambiguities) [1,21]. Additionally, it has been demonstrated
that FROG can measure partially coherent pulses by modifying
only the processing of its measurement. For instance, the XUV
pulses from free-electron lasers that are randomly delayed with
respect to the expected synchronized infrared pulses (within a
given temporal jitter envelope) can be retrieved from the jitter-
averaged traces [22], and such an approach could be generalized
to other sources of decoherence [22,23]. Multiphoton intra-
pulse interference phase scan (MIIPS) was shown to be able
to quantify this instability [13,24]. However, other methods
have been reported to miss the presence of a coherent artifact,
namely, spectral phase interferometry for direct electric-field
reconstruction (SPIDER) [11,18] and self-referenced spectral
interferometry (SRSI) [12]. Moreover, it has been shown that
satellite pulses with variable separations and/or relative phases
with respect to the main pulses are invisible when measured
by spectral-interferometry techniques, such as SPIDER [13].
Because FROG provides feedback on the measurement by
comparing the agreement between the retrieved and measured
traces, it was able to see unstable satellite pulses in all cases. In
studies performed so far, it did not retrieve the correct relative
pulse heights, but additional information in the measured trace
could provide the correct heights [13].

Of course, there are infinitely many types of possible pulse-
train instabilities, and they can be difficult to detect and identify.
Here, we consider one such, possibly common, situation: when
the group delay dispersion (GDD) of the pulses changes rapidly,
without concomitant change in the amplitude structure. Such a
situation can arise if angularly dispersive elements, e.g., grating
compressors or stretchers, are used for a laser with pronounced
beam-pointing instability. It can, in principle, also arise when
pulse energy fluctuations occur in a self-phase-modulating
medium. This type of fluctuation is virtually invisible in auto-
correlations. As a result, it is not generally discussed or of
concern. One may now argue that RF techniques might be
able to detect such artifacts, and this is certainly true for situa-
tions with rapid pulse-to-pulse fluctuations of the pulse phase
structure. Nevertheless, if phase fluctuations are relatively slow
compared to the repetition rate of the laser, RF methods are
prone to completely miss out on this artifact, while they would
clearly corrupt optical pulse characterization with their much
longer averaging times.

In this work, we find, among other results, that FROG yields
the approximate average pulse in the train and provides clear
indications of this instability. SPIDER can also detect this
instability by structure in its trace’s background. We further
show that some measurements from the literature [25] show
possible chirp instability, which can most likely be explained by
a disadvantageous setup of this early SPIDER apparatus. On the
other hand, if such issues can be resolved, our study suggests that
SPIDER has the potential to detect such degradations of the
pulse-to-pulse coherence.

2. FRINGE CONTRAST IN INTERFEROMETRIC
PULSE CHARACTERIZATION MEASUREMENTS

Interferometric visibility is a direct manifestation of coherence,
i.e., the maximum visibility occurs when 0 = 1. SPIDER
relies on an interference pattern formed by two frequency-
sheared pulses [2], and thus, to some extent, could be similarly
interpreted. A SPIDER trace can be mathematically written
approximately as

ISPIDER(ω)=
〈
|Ẽ j (ω)+ Ẽ j (ω+�)exp(iωT)|

2
〉

j
, (3)

where � is the frequency shift between the two up-converted
signals, and T is the delay between the two ancilla pulses. The
SPIDER technique is further discussed in Section 3. When
using an ensemble of pulses with varying temporal structure,
the main effect on a SPIDER trace is the degradation of fringe
visibility [11,18,19]. In the presence of a simple coherent arti-
fact, this loss of fringe visibility is homogeneous across the entire
SPIDER trace.

0

0.2

0.4

0.6

0.8

1

In
te

ns
ity

 (
ar

b.
 u

.)

SPIDER trace

700 750 800
Frequency (THz)

0.6

0.7

0.8

0.9

1

F
rin

ge
 c

on
tr

as
t (

ar
b.

 u
.)

Fringe contrast

(a)

(b)

Fig. 1. (a) SPIDER trace from [25], with the maximum and
minimum intensities traced by black lines. (b) Fringe contrast of the
SPIDER trace in (a), with a polynomial fit in black to emphasize the
general trend.
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In terms of reduced fringe contrast, an interesting case is
shown in Fig. 1, which is the first measured SPIDER trace for
sub-10-fs pulses [25]. Here, the visibility is high near the center
but substantially decreases in the spectral wings of the trace. This
rather localized reduction of fringe visibility differs from the
expectations described in Ref. [18] for the presence of a coher-
ent artifact, suggesting that a different mechanism is at work
here. The most straightforward explanation is spectral reflec-
tivity variations of the beam-splitter coatings, but this can be
rather safely ruled out here, as a reflection balanced scheme was
employed in Ref. [25]. As we further analyze below, one possible
explanation of the parabolic contrast reduction in Fig. 1(b) is a
pulse-to-pulse variation of the linear chirp, and in fact, the laser
under investigation in Ref. [25] contained a prism sequence
[26], which may have translated beam-pointing fluctuations
into chirp variations.

3. CHIRP INSTABILITY

For a systematic study of the effects of this instability on differ-
ent techniques, five trains of 5000 pulses each were simulated.
Each pulse had the same spectrum as that of the pulse that
yielded the SPIDER trace in Fig. 1. The spectral phase of each
pulse was allowed to vary, according to a normal distribution
of linear chirp with a mean of zero. The standard deviation σ
of the GDD or chirp for each train was different, uniformly
distributed from zero to 60 fs2. The one with σ = 0 represents a
stable train of Fourier-limited pulses.

Figure 2 displays the average pulse shapes of three of the
ensembles, showing the influence of chirp instability. The rms
width of the average pulse shape more than doubled in the pres-
ence of the largest amount of chirp instability we introduced.
Yet, the full width at half maximum was barely affected, since
most of the expansion was in the wings of the pulse.

The first method we considered was intensity
autocorrelation, which can be described by

Iac(τ )=

〈∫
∞

−∞

|E j (t)E j (t − τ)|2dt
〉

j
, (4)

where E (t) is the electric field in time domain, and τ is the delay
between the two replica pulses.
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Fig. 2. Average temporal pulse shapes for three of the ensembles.
The temporal widths reported in the legend are the rms widths. The
standard deviations of the GDD variation in the ensembles are: I, 0 fs2;
III, 30 fs2; and V, 60 fs2.
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Fig. 3. Autocorrelation measurement for σ = 60 fs2 (blue line),
along with the autocorrelation trace of a stable pulse, for the given
spectrum accompanied by higher-order spectral phases (red cir-
cles), having a similar autocorrelation, and autocorrelation of the
Fourier-transform-limited pulse, σ = 0 fs2 (black dotted line).

Because intensity autocorrelation is independent of the tem-
poral phase, it sees only the variations in the intensity, here the
pulse length. The autocorrelation measurement for the pulse
train with the largest chirp instability is shown in Fig. 3. The
autocorrelation of a pulse with the same spectrum fitted to the
signal is also plotted. Evidently, the autocorrelation of the pulse
train with the largest GDD variation fits almost exactly to this
stable pulse train, almost without any indication of instability.
No coherent artifact appears, and this problem would remain
completely undetected in autocorrelation measurements. As a
result, we do not consider autocorrelation further.

Spectrally resolving the autocorrelation gives us
second-harmonic generation (SHG) FROG [1]:

IFROG(ω, τ)=

〈∣∣∣∣∫ ∞
−∞

E j (t)E j (t − τ)exp(−iωt)dt

∣∣∣∣2
〉

j

.

(5)

Due to the uniqueness of a pulse retrieved from a FROG trace
(except for some well-known trivial ambiguities) [1], it is pos-
sible to retrieve the complex field from the FROG trace using
iterative algorithms. FROG and its many variations are preva-
lent techniques for characterizing ultrashort pulses, but, in this
work, we consider only the SHG version of FROG due to its
popularity. Also, it is the weakest version of this class of powerful
techniques in that it has an ambiguity in the direction of time,
which other versions do not, so it would be expected to yield the
poorest behavior of all the FROG variations in our study, and
the other versions will likely perform better.

We find that, in an SHG FROG measurement, chirp insta-
bility causes a noticeable widening of the spectrogram along the
delay axis, cf. Fig. 4, similar to that seen in the autocorrelation
measurement. But it also shows additional distortions, not vis-
ible in autocorrelation and unique to the case of chirp variation
studied here.

As in other cases of unstable pulse shapes and FROG,
attempting to retrieve the complex electric fields from the
traces corresponding to the given unstable pulse trains results in
retrieved traces that do not agree with the measured ones. This
is readily revealed by the relatively large value of G error, the
rms difference between the measured and retrieved traces, for a
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Measured FROG trace, = 60fs2

Measured FROG trace, = 0fs2
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Fig. 4. FROG traces for the pulse trains with (a) σ = 0 and (b) σ =
60 fs2. Chirp variation causes a noticeable widening of the trace along
the delay axis.

128× 128 noise-free SHG trace corresponding to σ = 60 fs2

(G = 2.10%, cf. Fig. 5). Additionally, the difference map can
(and should) be used to detect the presence of chirp instability.
This discrepancy is revealed by the distinct pattern in the dif-
ference between the retrieved trace and the measured trace, as
shown in Figs. 5(e) and 5(f ). The difference between the traces is
significant and non-random, indicating significant pulse-train
instability, here in the magnitude of linear chirp. This discrep-
ancy exceeds usual experimental noise levels and has a distinct
symmetry along both delay and frequency axes, which allows
it to be distinguished from experimental errors. Based on the
retrieved electric fields, as shown in Figs. 5(g) and 5(h), SHG
FROG yields the average rms widths of the train. Thus, SHG
FROG yields the approximate average pulse in the train and
provides clear indications of instability.

The dispersion scan (d-scan) method is very similar to
FROG, but measures second-harmonic spectra of a pulse train
as a function of dispersion rather than of delay. The former can
be accomplished by varying the insertion of glass wedges in a
pulse compressor setup [5]. Iterative algorithms are similarly
used to retrieve the complex field from the d-scan trace [9]. The
technique has recently been gaining popularity in measuring
near-single-cycle pulses, since these pulses are very sensitive
to dispersion [20,27–29]. Similar to FROG, we can therefore
make use of the redundant data contained in the measured
two-dimensional d-scan trace to the end of unveiling underlying
pulse train instability.
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Fig. 5. (a), (b) 128× 128 noise-free and noisy traces correspond-
ing to σ = 60 fs2, respectively. (c), (d) Retrieved FROG traces
(G = 2.10% and 2.13%, respectively, which indicates poor agree-
ment). (e), (f ) Difference in measured and reconstructed traces. A
characteristic pattern is due to chirp instability. (g), (h) Retrieved fields
with rms widths 16.8 fs (g) and 15.1 fs (h), close to the average width of
pulses in the train (16.1 fs).

A d-scan trace can be written as

Id−scan(ω, z)

=

〈∣∣∣∣∣
∫
∞

−∞

(∫
∞

−∞

Ẽ (ω)exp(i zk(ω)+ iωt)dω
)2

exp(−iωt)dt

∣∣∣∣∣
2〉
,

(6)

where z is the thickness, and k(ω) is the frequency-dependent
wave number of the dispersive material. Figure 6 displays the
traces for σ of 0 and 60 fs2. A d-scan trace in the presence of
higher-order dispersion in the pulse usually shows shifting of
the peak positions [5], but not spreading of the signal along
the insertion axis, as can be seen in Fig. 6(b). We attempted to
retrieve the phase from the latter trace, but the algorithm fails to
find any meaningful single pulse shape that would give rise to the
d-scan trace in Fig. 6(b). For a noiseless trace with σ of 15 fs2,
we already get a G of 2.79%, which goes up to 8.43% for 60 fs2.
We find that the d-scan is quite sensitive even to small chirp
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Fig. 6. D-scan traces for the pulse trains with (a) σ = 0 and
(b) σ = 60 fs2. The trace spreads along the insertion axis due to chirp
instability.

instabilities and indicates their presence with large retrieval
errors. In particular, rather small G errors on the order of a single
percent may result in the retrieval, which are nevertheless an
alarming indication of an underlying chirp instability. Similar
conclusions can be made for FROG in the presence of a coherent
artifact. While often ignored in literature, concomitant large
retrieval errors >1% with simply structured FROG or d-scan
traces appear to be valid indications of a coherence problem.

We can go one step ahead and quantify the retrieval error
by introducing a fidelity measure as originally suggested in
Ref. [24]. Fidelity is computed using the equation

F (z)=
Istable(z)/Istable(0)

〈I (z)〉/〈I (0)〉
, (7)

where I (z) is the measured intensity of the upconverted pulse at
glass insertion z, and Istable is computed using only a single pulse
instead of an ensemble of varying pulses.

Figure 7 shows the fidelity plots for five different chirp vari-
ations. This analysis shows that a chirp instability yields d-scan
traces that are structurally similar to those of unchirped pulses,
yet are substantially elongated along the glass insertion axis.
In the fidelity picture, this effect causes a characteristic drop in
the fidelity with increasing distance from zero dispersion. This
generic behavior was previously also observed when computing
the fidelity in MIIPS [24].

We next consider SPIDER. A SPIDER trace is an interference
pattern formed by two frequency-sheared spectra of an ultrafast
pulse. These sheared spectra are generated by sum-frequency
generation between two delayed replicas of the pulse under test
and a strongly chirped pulse. It is important to note that the
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Fig. 8. SPIDER traces from pulse trains of different degrees of
GDD variation, whose standard deviations are: I, 0 fs2; II, 15 fs2; III,
30 fs2; IV, 45 fs2; and V, 60 fs2.

SPIDER method requires the acquisition of a second interfer-
ogram for calibration purposes. This calibration measurement
utilizes the second harmonic of the same replica pair. Figure 8
displays the SPIDER traces for the five different values of chirp
instability. Even for the stable pulse train (σ = 0), the visibility
is not perfectly flat, as it also depends on the intensity and phase
of the pulse itself because of the frequency shear. On the other
hand, the reference trace used for calibration exhibits a perfect
visibility throughout.

Figure 8(b) shows a somewhat similar evolution of the fringe
visibility in SPIDER as we previously noticed for the fidelity
of d-scan traces, i.e., the fringe contrast is increasingly reduced
in the wings of the spectrum, but is nearly perfect at the central
wavelength. And this behavior matches the fringe contrast of the



Research Article Vol. 37, No. 1 / January 2020 / Journal of the Optical Society of America B 79

measured SPIDER trace in Fig. 1. In the following, we discuss
whether this fringe contrast reduction stems from the interac-
tion between ancilla and replica pulses or is indicative of a chirp
instability.

4. DISCUSSION

In order to resolve the question of a potential chirp instability,
the fringe contrast in Fig. 1 is compared with simulated SPIDER
traces of the same pulse, assuming different amounts of chirp
variation and an average spectral phase originally measured in
Ref. [25]. In our simulations, a Gaussian distribution of GDD
with standard deviation σ is assumed. The simulations clearly
indicate that SPIDER measures the correct average spectral
phase in the presence of chirp instability. This behavior is per-
fectly consistent with the findings in Ref. [18], in which the
spectral phase of each pulse in the train was a random compli-
cated function, but whose average was a constant, yielding a
very short retrieved pulse (much shorter than the actual average
pulse).

We point out here that, in principle, overall, SPIDER should
yield an accurate value for the average chirp when it is larger than
its variation. This is because, in general, SPIDER measures the
average spectral phase, and the average over various quadratic
curves (all with the same sign in this case) would be expected to
be about the average of the quadratics. However, when this con-
dition is not met and the average chirp is near zero, both positive
and negative chirps will be present, both lengthening the pulse
and hence its average. But the SPIDER measurement would
yield the average spectral phase, which would then indicate
near-zero chirp, and hence a shorter pulse than would in fact on
average be present.

We found the best agreement between the originally mea-
sured SPIDER traces for a chirp variation of σ = 29 fs2 (see
Fig. 9). Taking into account that the simulated value ofσ should
lead to a quite substantial broadening of the pulses by more than
a femtosecond, one can independently verify the presence of
a chirp instability by comparing to the autocorrelations that
were also measured in Ref. [25] (see Fig. 10). This comparison
clearly contradicts the presence of the chirp instability, as the
pulse would have appeared markedly longer in autocorrelation
measurements. Another way for such verification would have
been the inspection of the fringe contrast of the calibration
interferogram, but this measurement is unfortunately not
available anymore.

We therefore conclude that the apparent chirp instability
is actually caused by an artifact of the SPIDER setup used in
Ref. [25]. There are several different ways of replica/ancilla
preparation. In Ref. [25], a balanced Michelson interferometer
was used. This balanced setup with two beam splitters com-
pensates for small deviations from an ideal 50% beam-splitting
ratio, which, in principle, allows to obtain near-ideal fringe
contrast. However, at the same time, the Michelson setup is
also prone to air turbulence. In order to evaluate a potential
influence of resulting timing drift between the replica pulses,
we repeated the simulations assuming a 1 fs Gaussian timing
jitter between the replicas and equally well reproduced the fringe
contrast reduction in Ref. [25]. This timing jitter corresponds to
a length variation of only about 150 nm in one of the arms of the
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Michelson interferometer. This problem of few-cycle SPIDER
setups had already been recognized more than a decade ago,
i.e., ideally, the delay between the replicas must be maintained
within few-attosecond precision [30]. When the SPIDER tech-
nique advanced, one had consequently resorted to a different
method for the replica preparation, using a single solid etalon
to ensure sufficient delay stability [31]. However, this setup
typically comes with lower fringe contrasts and is therefore less
sensitive for a possible chirp instability. While we can rule out
a chirp instability in the measurements in Ref. [25], other pub-
lished SPIDER measurements of compressed supercontinua
[19] show a much stronger fringe contrast degradation. In this
situation, an underlying chirp instability cannot be completely
ruled out.

5. CONCLUSION AND OUTLOOK

We investigated the influence of a dynamic chirp instability on a
number of well-established characterization techniques for few-
cycle pulses. Compared to the widely explored coherent artifact,
a chirp instability is typically more difficult to detect and easily
overlooked in autocorrelation measurements.

SHG FROG measures a pulse that is close to the average
pulse shape and width, and a simple post-retrieval comparison
of measured and retrieved traces can check if this instability is
present. FROG and its variations have been able to distinguish
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all forms of instability tested for so far. Its two-dimensional
trace allows for a broad range of indicators of different types of
instability. In each case, it provides a reasonable pulse length and
has characteristic trace discrepancies that can be used to identify
the type of instability (e.g., the usual coherence spike for partial
mode locking and washed-out fringes in the central lobe for
unstable multi-pulsing). And, with some additional effort, its
magnitude can usually be found.

Also, d-scan appears to be sensitive to this artifact, resulting in
large retrieval errors even with the slightest instability we tested.
Similar to FROG, it benefits from having a two-dimensional
trace, which allows counter-checking of the reliability of the
retrieval. Quantifying the instability is also possible using the
same techniques presented in Ref. [32].

Most surprisingly, SPIDER also seems to be remarkably
sensitive to chirp instability, at least if delay variations between
the replicas can be suitably excluded. As they showed the char-
acteristic hallmark of this instability, we re-analyzed some nearly
20-year-old measurements published in Ref. [25] and found
that the observed fringe contrast reduction could be explained
either by a 29 fs2 GDD jitter on the pulse train or by delay
variations in the replica preparation. Additionally, analyzing
the autocorrelation data of this publication, we decided that the
fringe contrast variation is most likely explained by the latter,
i.e., atmospheric turbulence in the Michelson interferometer
that was used at the time.

In summary, our investigations indicate new approaches
for the safe detection of such very well-hidden instabilities.
One such way is the careful analysis of the fringe contrast of the
SPIDER measurement and the reference interferogram that is
simply measured from the SHG of the two replicas. Optimizing
the latter for high fringe contrast, even small chirp variations
might become measurable from fringe contrast reductions in
the SPIDER trace. Numerical simulations then allow to also
reconstruct the average pulse shape in the time domain, i.e., one
has access to resulting pulse-length variations, too.

Finally, we see promise in the d-scan technique for unveiling
mode-locking instabilities. As it relies on a one-beam geometry,
it cannot be corrupted by time-delay variations as SPIDER
obviously can. Moreover, this method has been successfully used
for characterizing some of the shortest pulses generated to date.
As our simulations clearly show, d-scan is not easily fooled by an
underlying dynamic instability. Even rather small chirp fluctu-
ations or the presence of a weak coherent artifact immediately
results in distorted d-scan traces that result in large errors and
erratic behavior of the retrieval algorithm. This further confirms
the capabilities of d-scan to clarify situations of unstable mode
locking [32].

In closing, we think that there is hope that we can finally
overcome the problem of misinterpreting unstable mode lock-
ing. Not only can we detect various artifacts based on the more
thorough inspection of SPIDER, FROG, or d-scan traces, but
it also seems to be possible to simultaneously determine the
average waveform together with its statistical spread, in both
the time and frequency domains. Apart from laser oscillators
with extremely short upper-state lifetimes, this also serves
some urgent needs in the endeavors of compressing pulses

down to the single-cycle limit or below, safely ruling out pulse-
train instabilities and concomitant degradation of coherence
properties.
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