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Extremely Robust Pulse Retrieval From Even Noisy
Second-Harmonic-Generation Frequency-Resolved
Optical Gating Traces

Rana Jafari

Abstract— We further improve and then demonstrate the
reliability of the previously introduced RANA approach for the
second-harmonic-generation frequency-resolved optical gating
(SHG FROG) phase-retrieval algorithm in the presence of signifi-
cant noise in the traces. We provide a set of relevant parameters
for this approach according to the noise level and trace size.
Using it, we achieve 100% convergence for thousands of even
extremely complex sample pulses, even when contaminated with
the introduced significant noise.

Index Terms— Optical pulses, phase retrieval, pulse measure-
ments, ultrafast optics.

I. INTRODUCTION

HE frequency-resolved-optical-gating (FROG) technique

measures the complete temporal electric field vs. time of
arbitrary ultrashort laser pulses without the need for assump-
tions or reference pulse [1]. It has been highly developed
and optimized, has many applications, and is an increasingly
standard technique for measuring ultrashort laser pulses over
a wide range of wavelengths, pulse lengths, and complexities.
It operates by acquiring spectra of optical signal fields gen-
erated from the nonlinear-optical interaction between variably
delayed replicas of the pulse in a medium. This yields a two-
dimensional data trace IrgoG(w, 7) of intensity as a function
of angular frequency @ and the relative delay 7 between the
replica pulses.

Direct retrieval of the pulse field from a measured FROG
trace is not possible, so indirect, iterative algorithms have
been developed over the years to retrieve the pulse from its
measured trace. Early efforts were unreliable and/or overly
complex [2], [3]. The generalized-projections approach [4],
however, was a significant step forward, achieving much
higher reliability with relatively straightforward implemen-
tation. Its reliability (convergence probability) is ~90% for
relatively simple pulses. But this probability falls to ~50%
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as the pulse complexity increases from simple-pulse time-
bandwidth products (TBPs) of ~1 to complex-pulse TBPs of
~100 (and depending on the noise present and the particular
version of FROG) [5], [6]. Other FROG algorithms have been
introduced, but they either address different issues, such as
missing data or programming ease [7] and not reliability.
Ideally, convergence would occur 100% of the time even when
the measured trace is very noisy. So, we address this issue and
solve this problem here.

II. SHG FROG AND ITS ALGORITHM

Second-harmonic generation (SHG) is the most commonly
used nonlinearity for FROG’s experimental setup due to its
sensitivity and simple geometry. Mathematically, the SHG
FROG trace is given by [1]:

o0 2
IggOGG(a), 7) = ‘/ Esig(t, T) exp(—iwt) dt (1a)
—00
where:

Esig(t,7) = E)E(r — 1) (1b)

The SHG FROG iterative phase-retrieval algorithm recon-
structs the unknown complex field, E(¢), by finding the signal
field Ejig(f,7) from the measured FROG trace using the above
two equations, that is, these two constraints. Specifically,
it first uses the measured data in the frequency and delay
domains, which, as shown in Eq. (la), is the squared mag-
nitude of the Fourier transform of the signal field. Second,
it uses the mathematical relation for the signal field in the
time and delay domains, which, for SHG FROG, is given by
Eq. (1b).

The goal of the algorithm is to find the temporal complex
electric field of a pulse, E(r), which can be written as the
complex-field amplitude in the time or, equivalently, frequency
domain:

E(t) = V1) exp (—ig (1)), (2a)
E(w) = V/S(o)exp (—igp()), (2b)

where 1(r) = |E(r)|* is the pulse intensity and ¢(¢) is the
phase, both as a function of time, ¢, respectively. Also, S(w)
is the pulse spectrum and ¢ (w) is the spectral phase, both as a
function of frequency . Knowledge of the complex field vs.
either time or frequency yields the complete pulse.
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An excellent and unusual feature of all versions of FROG
is that they also provide feedback on the quality of the
measurement. There is a unique relation between the field and
its FROG trace [8], [9]. Also, the trace, an N x N array, has
N2 points, far more points than the pulse, which has only N
intensity points and N phase points, where typically, N ~ 100
or more. Thus, when agreement occurs between the measured
trace and the trace reconstructed from the retrieved pulse, one
can conclude with a high degree of certainty that the pulse
was correctly measured.

On the other hand, if FROG is used to measure an unstable
pulse train, the trace will be the sum of many different FROG
traces (essentially one for each pulse in the train), and there
is no single field whose trace corresponds to the measured
trace. Therefore, the FROG algorithm, which can only return
a single pulse, cannot return a perfectly meaningful result.
Simulations have shown that, fortunately, it returns a pulse
fairly close to the typical field of the pulses in the train.
In the presence of such instability, however, the retrieved
FROG trace corresponding to the retrieved field cannot agree
with the measured one [10]-[12], tipping off the user to the
presence of instability. More recently, algorithms have been
developed to extract additional information from FROG traces
corresponding to such partially coherent pulses [13], [14].
In general, the rule of thumb resulting from this work is that
disagreement between the measured and retrieved traces is the
key indicator of pulse-shape instability.

Unfortunately, there is another instance when this dis-
agreement might occur, and that is when the pulse-retrieval
algorithm does not converge to the correct solution, that is,
it stagnates. Hence, additional attempts for the recovery of the
field using the algorithm are typically needed [6]. But there
is always the chance that the algorithm will stagnate as many
times as the user is willing to run it, thus making it difficult to
distinguish between the two very different cases of algorithm
stagnation and pulse-train instability.

III. THE RANA APPROACH

Consequently, a highly reliable FROG algorithm is critically
required in order to avoid this uncertainty. Fortunately, one has
recently been introduced. It is called the Retrieved-Amplitude
N-grid Algorithmic (RANA) approach, and variations of it
work for SHG FROG [15] and also other versions of FROG,
including the polarization-gate (PG) and transient grating (TG)
FROG techniques [16]. For all of these FROG variations,
it yielded 100% convergence even when tested on very large
samples of pulses (over 20,000) and even with extremely high
complexity—TBPs as high as 100—and large array sizes and
in the presence of noise in the traces [15], [16].

The RANA approach first involves retrieving the spectrum
of the pulse directly from the trace. For SHG FROG, it does
this using the trace “frequency marginal,” which is obtained
by integrating the trace over the delay variable, and, in SHG
FROG, it can be shown to be equal to the autoconvolution of
the spectrum, S(w) [1]:

+o00
MSHG (@) = / 138G (0, 7) dT = S(w) * S(w).

—00
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Fig. 1. Schematic representation of the multi-grid component of the RANA
approach. E( corresponds to the set of the initial guesses.

This result has recently been shown to be invertible to
directly yield the spectrum [15]. Next, we generate a set
of about a dozen initial guesses, all with the above-derived
spectrum and each with a different, random spectral phase.
These pulses are then used in iterations on smaller and coarser
trace grids, in what is called a “multi-grid” scheme [17], [18],
and only the few best pulses are kept. Lastly, these few best
pulses are provided to the full FROG trace for a few final
iterations to completely determine the pulse. See Fig. 1. This
approach proved perfectly reliable, with no stagnations for
over 25,000 traces pulses in the presence of small amounts of
noise [15]. Even better, it also proved faster for more complex
pulses. And a variation on it performed equally well for other
common FROG beam geometries [16].

As the FROG trace becomes contaminated with more noise,
however, the frequency-marginal curve begins to deviate more
from the exact autoconvolution of the spectrum, and hence the
direct retrieval of the spectrum becomes proportionally less
accurate and also more challenging. In the initial implementa-
tion of the RANA approach for SHG FROG [15], we simply
considered its viability, so the analysis was performed with
only small amounts (0.5%) of multiplicative noise added to the
SHG FROG traces. In view of the possibility that additional
noise in the trace could defeat this approach, it is important
to consider traces with more noise. So, in this work, we test
the RANA approach and, in particular, the performance of the
direct retrieval of the spectrum from the frequency marginal of
SHG FROG in the presence of considerable amounts of both
multiplicative and additive measurement noise. We introduce a
few additional simple tricks to the approach that were not used
in our earlier work, as they had proven unnecessary then, but
here, in the presence of significant noise, we find that they are,
in fact, useful. Finally, we provide a procedure for determining
the number of required initial guesses and iterations used in
the multi-grid component of the approach based on the amount
of noise in the given trace such that a 100% reliable retrieval
from such traces is still achieved for thousands of test pulses.
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IV. DIRECT RETRIEVAL OF THE SPECTRUM
FrROM NOISY TRACES

To obtain the spectrum directly from the frequency marginal
of the trace, we use the convolution theorem, which yields:

520 = £/ 7 (S(@) * S@)), 4

where s(t) is the inverse Fourier transform of S(w). Taking the
square root yields s(¢), but with ambiguity in the sign of the
roots, so we define s+ (¢), according to whether the real part
of s1(t) is positive or negative. This ambiguity is removed
by taking advantage of the Paley-Wiener theorem [19],
which states that the inverse-Fourier transform of a band-
limited signal (here, the spectrum) is infinitely differentiable.
We apply this smoothness criterion to st (f) using a weighted
sum of zeroth- to second-order derivatives [15].

Specifically, we have used the following weighted sum as
the criterion for determining the sign:

ex = a |[Aoel> + B 1A 1P +y A, )

where a = 0.09, = 0425,y = 1 are the previously
determined weights in [15]. Also, these differences are given
below, where s(fx<;+1) refers to a value of s(t) for which a
sign has already been assigned:

Aox = sx(tit1) —s@),

Atz = [s2(iv1) = s@)] = [s@) — s@i-1)],

Asx = {[s£(tis1) = s@)] — [s@) —sti-1)]}
—{[s@) —s@i-)] = [sGi—1) —s@i-2)]}.

The root corresponding to the smaller ¢ is selected for each
temporal point.

Fig. 2 shows this process for a typical pulse. Note that
simple continuity of s(¢) (Aox) is sufficient to determine the
correct root for the overwhelming majority of values of ¢. But,
when both real and imaginary values of s are close to zero,
continuity of the first derivative becomes the deciding factor.
We also include the second derivative just in case it helps.
Of course, infinitely many additional derivatives could also be
used, but noise is likely to render them unhelpful.

However, as mentioned, as the trace becomes corrupted with
more noise, the frequency marginal deviates from the exact
curve corresponding to the autoconvolution of the spectrum
(see Fig. 3). Specifically, we find that the original approach we
discussed in [15] then does not retrieve the correct spectrum
on occasion. For example, for the highly challenging case of
extremely complex pulses with TBPs of ~40 with massive
noise (5% multiplicative and 3% additive) in the trace, it is
only successful in achieving the correct spectrum (that is, with
an rms error of less than 9%) 30% of the time. We should
emphasize here that, while it is not essential that the above
deconvolution process retrieve the precise spectrum, as it is
only used as an initial guess for the usual FROG algorithm,
which performs fairly well even with random noise as an initial
guess, it is preferable to optimize it for cases of very high
noise. Indeed, it is, of course, best to retrieve the spectrum as
well as possible. Fortunately, there were additional constraints

and,
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Fig. 2. Plots of real (a) and imaginary (b) parts of s4(r) =

+ 7 - {MSHG () }. The roots with positive real parts are shown in purple,
and the roots with negative real parts are shown in blue. The correct signs
of the roots are easily obtained by applying the continuity and derivative-
continuity conditions on the real and imaginary parts of the root and are
shown by the dashed gray line.

that we did not take advantage of in that work, and which we
do here.

Therefore, in this work, we include additional approaches to
enhance the performance of the RANA approach. Specifically,
we determine the temporal points at which both the real and
imaginary parts of s(z) are close to zero (where decisions are
the most difficult and hence most likely to go awry due to
noise), and the alternative signs of the roots after these points
are also used for determining the spectrum of the pulse (see
Fig. 4).

In addition, because the spectrum is always real, the real
part of its inverse-Fourier transform, s(z), must be even, and
the imaginary part odd. Thus, we need only determine the left
half (negative times) or right half (positive times) of the s(z)
curve; the other is then determined by the above symmetry
condition. So, we consider only the left half of the time values
and then only the right half, yielding two, possibly somewhat
different, curves for s(t).

The combination of applying the weighted sums and also
using alternative signs after the roots that are close to zero
leads to a set of curves obtained from the left and right sides
of s1(¢). Next, the resulting autoconvolutions of these curves
are obtained and compared with the frequency marginal of the
trace.

Another constraint that we now take advantage of is the
fact that the spectrum must also be positive definite. So we
select the spectrum whose autoconvolution yields the smallest
rms difference with the frequency marginal. We also kept no
more than 25 of the extra generated spectra based on their
closeness to the frequency marginal and their positivity (this
value would be smaller depending on the number of extra
generated curves). Next, three additional spectra used for the
initial guesses are selected from this remaining set of less than
25 spectra with the caveat that they are fairly different from
the previously selected spectra (based on the rms differences
from each of the previously selected curves for the spectra).
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(a-c) Noisy SHG FROG traces with multiplicative noise of 1%, 3%, and 5% and additive noise of 1%, 2%, and 3%, respectively. (d-f) The difference

between the noisy trace and the noiseless simulated traces. (g-i) The autoconvolution of the spectrum (orange), marginal obtained from noisy trace M"Y (w)
(gray), and marginal after noise suppression (dotted black), M(w). (j-1) The simulated and retrieved spectra obtained directly from the frequency marginal,
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Fig. 4. Example of points where the sign decisions are the most likely to
be wrong. (a) Real and (b) imaginary parts of roots corresponding to the root
with positive real part, s (¢), for a complex pulse shown with purple circles.
The points where both real and imaginary parts are close to zero are shown
with yellow markers. At these points, alternative signs of roots are taken into
consideration. The correct curves for the real and imaginary parts of s(r) are
indicated by the dashed gray line.

It is also worth mentioning that, as is generally done, low-
pass filtering is first performed on the measured trace [5].
In addition, we apply background subtraction, but on the
marginal curve, MS7C (), rather than the entire trace, for the
purpose of retrieving the spectrum.

Additionally, we use .7 ~'{M3HG(w)} in its original
length, N, without zero-padding to the length 2N, as was done
in [15], as we found zero-padding to be unnecessary.

V. RESULTS

We tested the robustness of the RANA approach on sets of
pulses with rms time-bandwidth products (TBP = 7yy50rms)
of 2.5, 10, and 40, with array sizes of 64 x 64,256 x 256, and
1024 x 1024, respectively (where 0.5 is the TBP of a Fourier-
transform-limited Gaussian pulse). We estimated the required
parameters of the RANA approach for three levels of noise,
and they are given in Table I. These parameters include the
number of initial guesses and iterations on each grid, based
on the pulse complexity and noise in the trace.

Fig. 5 shows an instance where consideration of an alterna-
tive sign of the root at one of the points of s(¢) that is close
to zero was effective in determining the correct spectrum.

The performance of the direct spectral retrieval from the
frequency marginal of the set of pulses with 7TBP = 10 contam-
inated with 3% multiplicative and 2% additive noise is shown
in Fig. 6 where the distribution of rms differences between
the simulated spectrum and four selected spectra are given,
as well as the lowest rms difference among all four chosen
spectra as the initial guesses.

Fig. 7 provides representative retrieval results for a set of
pulses with TBP = 10 in the presence of significant noise (5%
multiplicative and 3% additive noise).

For the set with TBP = 2.5, the direct spectral retrieval step
was successful (that is, the rms difference between the actual
and retrieved spectra less than 9%) for more than 99.5% of
cases. This rate is 99.8% to 96.5% and 95% to 77% for sets
with TBP = 10 and 40, respectively, as the noise increases
over the values considered here. However, we emphasize again
that it should be kept in mind that these spectra are only used
as initial guesses, rather than the final results, so these success
rates are excellent. Indeed, prior to the RANA approach, initial
guesses of random noise or simple fixed-width Gaussians were
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TABLE I

(A) PARAMETERS USED FOR PULSES WITH TBP = 2.5, AND ARRAY SIZE 64 x 64 (IG: INITIAL GUESS). (B) PARAMETERS USED FOR
PULSES WITH TBP = 10, AND ARRAY SIZE 256 x 256 (IG: INITIAL GUESS). (C) PARAMETERS USED FOR PULSES WITH
TBP = 40, AND ARRAY SIZE 1024 x 1024 (IG: INITIAL GUESS)

(A)
RN o #of IGs | # of iterations | # of IGs | # of iterations | # of IGs ,
Multiplicative | Additive | 0\ x| N2xNZ | NR2XNR2 NxN G/G” error
Noise Noise NxN array
array array array array array
1% 1% 16 20 8 15 4 0.007/0.08
3% 2% 16 25 12 25 4 0.008/0.10
5% 3% 20 30 12 25 4 0.009/0.12
(B)
TN . #of IGs | # ofiterations | # of IGs | # of iterations | # of IGs ,
Multiplicative | Additive | vy nNuxna | N2xN2 | NRxNR2 Nxn | GG error
Noise Noise NxN array
array array array array array
1% 1% 24 20 12 15 4 0.004 /0.08
3% 2% 32 30 16 30 4 0.006/0.10
5% 3% 36 35 20 30 4 0.0075/0.12
©
RN il #of IGs | # of iterations | # of IGs | # of iterations | # of IGs ’
Multlp!lcatlve Add{tlve N/4xN/4 N/4xN/4 N/2XN/2 N/2XN/2 NxN G/G’ error
Noise Noise NxN array
array array array array array
1% 1% 32 30 20 25 4 0.0035/0.08
3% 2% 36 30 24 30 4 0.0055/0.10
5% 3% 40 35 24 30 4 0.007/0.12
TABLE 11

NUMBER OF SAMPLE PULSES AND AVERAGE RETRIEVAL TIMES FOR THE SAMPLE SET OF PULSES IN THE THREE NOISE LEVELS

TBP =2.5 TBP =10 TBP =40
Multlpl}catlve Addl.tlve Avgrage Number of Avgrage Number of Avgrage Number of
Noise Noise retrieval retrieval retrieval
. pulses . pulses . pulses
time time time
1% 1% 0.15s 5000 1.1s 5000 35s 1000
3% 2% 0.20s 5000 2.1s 5000 45s 1000
5% 3% 0.24s 5000 2.6s 5000 49s 1000

used as initial guesses, and convergence rates of >50% were
achieved, despite such inaccurate initial guesses.

We considered a pulse retrieval to have converged to the
correct solution when the G error (the rms difference between
the measured and retrieved traces) or G’ error (the trace-
intensity-weighted rms difference between the measured and
retrieved traces) were reached to either of the cutoff values
given in Table I. These values appropriately depend on the
trace size and amount of noise. As the traces become smaller
and noisier, the expected G error increases. However, the G’
convergence criterion depends only on the noise value and
is independent of the trace dimension. In the presence of
significant noise, in addition to the visual agreement between
the measured and retrieved traces, the G’ error is a generally
better measure of the success of the retrieval but, its use is not
essential to the process.

For the multi-grid step, in moving from one grid to the next,
the best retrieved results based on the value of G (or G’) error
are selected. Next, each of the four directly retrieved spectra
is replaced with the one retrieved after some iterations by the
usual generalized-projections (GP) phase retrieval algorithm
for FROG [1] or any other FROG algorithm the user prefers,

and the G (or G) errors of the resulting traces are compared.
If the process yields a smaller G (or G') error, the spectrum is
replaced with the best one at this point. Even though this step
might increase the overall retrieval time, as four additional
traces for each of the initial guesses are obtained and the
resulting G errors are calculated, it leads to a better initial
guess. Table II presents the average retrieval times using the
same computer and programing language (MATLAB) as in
our previous work.

We found that the RANA approach converged to the correct
pulse for every pulse in our sample of 15,000 pulses.

Because the RANA process worked so well, instead of
plotting “typical” results, we plot our absolute worst results
in Figs. 8 and 9, corresponding to the largest G error for the
given pulse sets, with 7TBP = 2.5 and 40, respectively, each
corrupted with 5% multiplicative and 3% additive noise. Note
the excellent agreement between actual and retrieved pulses in
both cases.

VI. DISCUSSION AND CONCLUSION

Overall, we have found that the original implementation of
the RANA approach works quite well, even in the presence
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the curves obtained by applying the weighted sum for smoothening the roots
(a, ¢), and the curve when the alternative sign of root is considered after
a point where both the real and imaginary parts of root are close to zero
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the dashed gray line. It can be seen from (b) and (d) that considering the
alternative signs of root after a root close to zero yields the correct spectrum.
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(a) Corresponds to the spectrum with an autoconvolution yielding the smallest
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always the best, but the others could be helpful in cases of considerable noise.

of significant multiplicative and additive noise. However,
we found that improving it slightly allows it to work even
better—indeed, extremely well even in the presence of sig-
nificant noise. In summary, our improved RANA approach
(including standard techniques) involves these steps:

Fourier-filter the measured trace.

Compute the trace frequency marginal.

Subtract any background from the frequency marginal.
Inverse-Fourier-transform the frequency marginal and
compute the two square roots (+/—) of it for all times.
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Fig. 7. Direct spectral retrieval results from SHG traces, with TBP = 10,
contaminated with 5% multiplicative and 3% additive noise. (a) Retrieved
spectra in the top 25%, (b) the middle 50%, and (c) the bottom 25% of the
rms difference distributions. The simulated spectrum is given in light green
line, and the best-retrieved spectra are shown by dashed black lines. All of
the results show good agreement with the simulated spectra. Indeed, as the
retrieved spectra are only used as initial guesses, these results are more than
sufficient for pulse retrieval.
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Fig. 8. Worst-case pulse-retrieval result for a pulse with TBP = 2.5 for a

trace with 5% multiplicative and 3% additive noise. G’ = 0.0854 < G’

cut—off”’
and G = 0.0102. (a) Simulated FROG trace before applying the noise.

(b) Retrieved FROG trace. (c, d) Simulated and retrieved temporal/spectral
field (orange/green: simulated temporal/spectral intensity; cyan/magenta: sim-
ulated temporal/spectral phase; red/dark green: retrieved temporal/spectral
intensity; blue/purple: retrieved temporal/spectral phase).

5. For negative times, start on the left (the most negative
time), and choose the root that minimizes the sum of the
derivative differences.

6. Find the local minima of the real part of the positive root
and keep points for which both the real and imaginary
parts are close to zero. Retain the alternative signs of the
roots after these points.

7. For positive times, use +/— the mirror image of s(¢) for
negative times in order to obey the reality condition for
the spectrum.
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Fig. 9. Worst-case pulse-retrieval result for a pulse with 7TBP = 40 for a
trace with 5% multiplicative and 3% additive noise. G = 0.0065 < G cys— o
and G’ = 0.1506. (a) Simulated FROG trace before applying the noise.
(b) Retrieved FROG trace. (c, d) Simulated and retrieved temporal/spectral
field (orange/green: simulated temporal/spectral intensity; cyan/magenta: sim-
ulated temporal/spectral phase; red/dark green: retrieved temporal/spectral
intensity; blue/purple: retrieved temporal/spectral phase).

8. For positive times, repeat steps 5-7, but beginning at
t = 0, and proceeding rightward to increasingly positive
times.

9. Keep only the four best solutions for s(¢), comparing
their autoconvolution with the frequency marginal, their
positivity, and uniqueness to evaluate them (see the text
for details, although the details of the approach used here
are not important).

10. Generate a number (see Table I) of initial guesses using
the above retrieved spectra and random spectral phases.

11. Run the GP algorithm (or any other FROG algorithm)
on these initial guesses for a number of iterations (see
Table I) using the N/4 x N/4 array.

12. Keep only the best pulses (see Table I) and run the FROG
algorithm on them for the N/2 x N/2 array, again keeping
only the best pulses when this is complete.

13. Run the remaining four best pulses for the complete
FROG trace, choosing the result with the lowest G or G’
error as the solution.

The above approach achieves convergence for all pulses that
we tried, even in the presence of massive noise. While the
changes we made here were mostly minor, including additional
roots of the inverse-Fourier transform of the spectrum appears
to add the most to its reliability—enough to handle rather large
amounts of noise in the traces. With the use of this slightly
modified RANA approach, we achieved 100% convergence
on three sets of pulses with even very high complexities and
contaminated with low to quite high levels of noise that are
more likely to be present in experimental FROG traces of sta-
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ble pulse trains. We believe that SHG FROG’s pulse-retrieval
algorithm is now effectively foolproof for the very general type
of measurement noise considered here. In this work, we have
used the usual GP algorithm [1] in the RANA approach, but
this algorithm could simply be replaced by any other FROG
pulse-retrieval algorithm.

For the full trace, we use only four pulses, but convergence
almost always occurs on the first one.

Except for a very slight increase in convergence time
for very simple pulses, we find that there is essentially no
“downside” to the RANA approach, as, for more complex
pulses, it is even faster than the FROG algorithm upon which
it is based. Of course, RANA lends itself naturally to parallel
processing and so could operate even faster.

As FROG is currently the most popular complete pulse-
measurement technique in the numerous fields that use ultra-
short laser pulses, we believe that this work will result in
significantly better measurements of, especially, shaped pulses
in numerous fields. Also, arguably more importantly, any
discrepancies between measured and retrieved traces can now
be attributed unambiguously to pulse-shape instability. Finally,
we believe that this improvement will help to convert more
users from obsolete methods, such as autocorrelation, to more
informative and reliable pulse measurements.
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