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Abstract: Devices that measure the presence of instability in the pulse shapes in trains
of ultrashort laser pulses do not exist, so this task necessarily falls to pulse-measurement
devices, like Frequency-Resolved Optical Gating (FROG) and its variations, which have
proven to be a highly reliable class of techniques for measuring stable trains of ultrashort
laser pulses. Fortunately, multi-shot versions of FROG have also been shown to sensitively
distinguish trains of stable from those of unstable pulse shapes by displaying readily
visible systematic discrepancies between the measured and retrieved traces in the presence
of unstable pulse trains. However, the effects of pulse-shape instability and algorithm
stagnation can be indistinguishable, so a never-stagnating algorithm—even when instability
is present—is required and is generally important. In previous work, we demonstrated
that our recently introduced Retrieved-Amplitude N-grid Algorithmic (RANA) approach
produces highly reliable (100%) pulse-retrieval in the second-harmonic-generation (SHG)
version of FROG for thousands of sample trains of pulses with stable pulse shapes. Further,
it does so even for trains of unstable pulse shapes and thus both reliably distinguishes
between the two cases and provides a rough measure of the degree of instability as well as
a reasonable estimate of most typical pulse parameters. Here, we perform the analogous
study for the polarization-gating (PG) and transient-grating (TG) versions of FROG, which
are often used for higher-energy pulse trains. We conclude that PG and TG FROG, coupled
with the RANA approach, also provide reliable indicators of pulse-shape instability. In
addition, for PG and TG FROG, the RANA approach provides an even better estimate of a
typical pulse in an unstable pulse train than SHG FROG does, even in cases of significant
pulse-shape instability.

Keywords: ultrafast; ultrashort; FROG; instability; coherent artifact; phase; pulse measurement

1. Introduction
Amplified ultrashort laser pulses are in widespread use for the study of numerous

phenomena and have provided important insights across many disciplines. Whether a
study involves single-shot or multi-shot excitation of an effect, pulse-train stability is essen-
tial for optimal performance in any application. In other words, such measurements require
consistency not only in the pulse energy but also in the pulse shape, i.e., its intensity and
phase evolution during the pulse. For instance, high harmonic generation, which serves
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as the foundation for many important disciplines, including attosecond light sources [1],
ultrafast optoelectronics [2], and attosecond spectroscopy [3–5], demands high stability in
all pulse characteristics. Moreover, spectroscopic methods [6–13] use ultrashort pulses to
enable the exploration of fundamental properties of matter, such as transient photo-induced
phenomena, electronic structure, the dynamics of bound and free electrons, quantum co-
herence, and quantum spin, all of which require pulse-train stability to prevent fluctuating
excitations of the sample with each pulse, especially when nonlinear dependencies or small
temporal or spectral variations in the ultrashort pulse are being investigated [14]. The
generation of ultrashort pulses at exotic wavelengths requires pump lasers, i.e., optical
parametric oscillators and amplifiers, whose stability is especially consequential as the
output pulses are nonlinearly dependent on the properties of the input light. Stable pump
lasers are necessary to achieve consistent supercontinuum using optical fibers, in particular,
hollow-core fibers [15,16], and for applications in high-intensity (>TW) ultrashort pulses, es-
pecially as the repetition rates and average power of these systems continue to increase [17].
Indeed, the medical [18–22] and industrial [23,24] domains now rely on amplified ultra-
short laser pulse trains for surgical procedures, imaging, and micro-fabrication, including
ultrashort pulse ablation manufacturing [25–27], selective laser-induced etching [28], and
powder bed alloy fusion [29,30].

Furthermore, existing short-pulse petawatt-class lasers have now demonstrated new
high-intensity laser-matter interactions that lead to secondary sources of high-energy
photons [31], neutrons [32], and charged particles [33–35], with applications to medical
imaging [36], cancer radiotherapy [37], multi-modal radiography [38] and tomography [39],
and even fast ignition for inertial fusion energy [40,41]. Looking into the future, the
realization of the necessary secondary source flux for such applications will require petawatt
lasers with high average power (100 s kW) and increasing repetition rates (>kHz [42,43]).
Over the last few years, high intensity (>1018 W/cm2), higher repetition rate (10–50 Hz)
laser systems have been commissioned [44,45] and are now online [17,46], with 10 kHz high-
average-power petawatt systems now designed [47]. A central need for these high average
power systems as their repetition rates approach the MHz level is rapid characterization and
feedback [48] to ensure the highest quality pulse trains and the most stable performance. In
all the above applications, laser pulse-shape stability is crucial to ensure reliable secondary
source generation.

Unfortunately, amplified ultrashort laser pulses are often plagued by instability, which
can be due to a number of factors, including thermal fluctuations, unstable pump sources,
inconsistent mode locking, vibrational pointing jitter, and turbulence in the surrounding
air, to name only a few such culprits. The resulting instability tends to be more prevalent
in laser systems with higher energies and shorter pulses, and it is especially pronounced
in cutting-edge laser systems that advance ultrashort-pulse technology, such as few-cycle-
pulse systems and lasers at atypical wavelengths.

From the birth of the field of ultrafast optics, shot-to-shot variations in the pulse
shape, that is, the pulse intensity and phase vs. time, of such laser pulses have presented a
particularly difficult challenge for ultrashort pulse laser measurement [49,50]. When faced
with a train of pulses with unstable pulse shapes, the temporal intensity autocorrelation
(the first method for measuring ultrashort pulses) produces a broad background with a
narrow spike atop it. The width of this spike, which has come to be known as the coherence
spike or coherent artifact, corresponds only to the potentially much shorter coherent temporal
component of the unstable pulses in the train. The coherent artifact is therefore shorter
than the typical pulse in the unstable train. While it is an obvious spikelike feature when
the instability is significant, it can actually be quite misleading when the instability is not
so significant; in this case, it may blend into the rest of the trace, resulting in a mistakenly
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short pulse length by a factor of two or more, as well as the mistaken conclusion of a stable
pulse shape.

While it is now possible to measure the complete intensity and phase vs. time for
a stable pulse train [51], many such measurement techniques have not been thoroughly
studied for the case of pulse-shape instability and, unfortunately, like autocorrelation, can
be badly confused by it. Currently, no device dedicated to the independent verification of
pulse-shape instability exists, and, as a result, the responsibility of identifying the existence,
severity, and kind of instability falls to the pulse-measurement methods themselves, which
are not, in general, designed for this challenge. As a result, insufficient progress has been
made in addressing this problem, and recent work [52–56] has revealed, among other
results, the startling fact that, in the presence of pulse-shape instability, some widely used
(mostly interferometric) methods measure only the coherent artifact.

There are numerous complications in attempting to measure such an unstable pulse
train by any technique, as all measurement techniques necessarily provide a single re-
sulting pulse from a given measured trace, and no one pulse can properly represent the
many possible different pulses over which a measurement is made. As a result, the task
is fundamentally impossible, and one must settle for quantities that are in some sense
averaged. Unfortunately, this can yield results that are of little to no value.

Over the centuries, traditional spectrometers have provided a simple “average” spec-
trum. Of course, such measurements average out any spectral structure and so necessarily
deliver a smoother spectrum than is in fact present. An extreme example of the highly
misleading information provided by such a measurement is the multi-shot spectrometer
measurement of the spectrum of a supercontinuum pulse from microstructure fiber, which
yielded an extremely smooth spectrum, despite the fact that each individual pulse spectrum
was wildly different and actually comprised over a thousand sharp spikes [57,58].

As a result, a typical spectrum, which often differs significantly from the average spec-
trum, could be, and often is, significantly more complex, but it would be much more
informative. Remarkably, in the above-mentioned study, the Cross-correlation Frequency-
Resolved Optical Gating (XFROG) technique [57,58] used to measure the continuum aver-
aged over 100 billion pulses nevertheless actually provided such a typical spectrum. As a
result, XFROG has become the standard method for measuring such light pulses.

The spectral phase requires even more significant consideration. It is well known that,
for a given spectrum, the shortest pulse corresponds to a spectral phase that is flat, while
that of a longer, typically more complex, pulse is necessarily complex [57]. Of course, simply
averaging the spectral phase over many pulses with random complex spectral phases will,
like a spectrometer-measured spectrum, also yield a much simpler and smoother curve,
indeed, often a flat spectral phase. As a result, measuring the average spectral phase
of an unstable pulse train invariably erroneously yields a shorter pulse than is actually
present and often yields the shortest possible pulse for a given measured spectrum (which,
by the way, is also usually averaged over many pulses in these methods and so is also
anomalously smooth). Indeed, measuring the average spectral phase will always yield a
pulse that is shorter than any of the individual pulses in the train, and often by a large
factor. In other words, the average spectral phase is the frequency-domain description of the
coherent artifact [51].

As a result, it is crucial that a pulse-measurement technique not provide an average
spectral phase, which is, in fact, an essentially useless quantity. If it does, it will invariably
yield a shorter pulse than is, in fact, present—unless the pulse train is perfectly stable (and
also spatially uniform). Indeed, such a method will be unable to differentiate a stable train
of short, simple pulses from an unstable train of long, complicated pulses—the best- and
worst-case scenarios, respectively, for most applications. Although critically important,
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this issue is often overlooked and/or poorly understood, and several popular techniques
currently in use (and in use for decades) suffer from precisely this problem [52–56]. As with
the spectrum, but much more importantly here, a pulse-measurement technique should
ideally provide a typical spectral phase, or at least a phase as close as possible to it, which,
coupled with a typical spectrum, would then more accurately reflect the average pulse
length in time. If this is not possible (and it usually is not), the measurement should at least
provide a typical pulse length.

Although single-shot measurement is the obvious solution to this problem, it is not
possible for many laser systems, especially high-repetition-rate systems, for which even
the shortest camera exposure times still capture multiple pulses in the train. And spatially
averaging these quantities over a spatially complex beam would likely have precisely the
same smoothing effect (although this effect has not yet been studied). Fortunately, some
progress has been made: we earlier demonstrated that discrepancies between measured
and retrieved Frequency Resolved Optical Gating (FROG) traces turn out to be a good
indicator of instability [57,58]. They are a beneficial result of FROG’s overdetermination of
the pulse: FROG’s N × N data array is used to measure only 2N pulse parameters. So, a
trace that averages over many different pulses cannot correspond to a single pulse. This
has turned out to be a very helpful feature, allowing FROG to indicate instability by the
presence of systematic discrepancies between measured and retrieved FROG traces.

Unfortunately, possible pulse-retrieval algorithm stagnation can also yield similar
discrepancies. Even in the absence of instability, iterative algorithms and, in particular,
FROG’s standard Generalized Projections (GP) algorithm can stagnate for complex pulses,
yielding a retrieved pulse that bears little resemblance to a typical pulse and also depends
on the initial guess. So, distinguishing between pulse-shape instability and algorithm
stagnation—two very different issues—as the cause of such trace discrepancies is critical.

This has required us to redefine what we mean by algorithm “convergence” when
dealing with pulse-shape instability [59]. In the absence of instability, convergence is easy
to identify; the only differences between the measured and retrieved traces are due to
random noise in the measured trace. Stagnation can be easily visually identified by the
presence of systematic errors in the difference between the two traces (assuming that the
measurement was made correctly).

In the presence of instability, however, the convergence concept is more subtle. In this
case, stagnation, as we recently defined it [59], occurs when the RMS difference between
the measured and retrieved traces, usually referred to as G, is higher than the lowest
achievable G value for the given measured trace. But what is this latter value? Determining
it requires running the relevant FROG algorithm numerous times (assuming that the
algorithm converges at least once, which nearly always occurs in FROG in practice). The
pulse with the lowest value of G is declared the converged case and hence the best estimate
of the typical pulse. Then comparing its trace with the measured trace, it is evident that
the more systematic error between the two traces the more instability is present. This is
reasonable, but, unfortunately, running an algorithm many times is neither convenient nor
always completely convincing.

What is needed is an algorithm that always converges to the lowest possible G value,
even in the presence of instability in the first place. Fortunately, in previous work, we
showed that this can be done for the second-harmonic-generation (SHG) version of FROG.
Specifically, we demonstrated that our recently introduced Retrieved-Amplitude N-grid
Algorithmic (RANA) approach [60–62] not only achieves extremely reliable (100%) pulse-
retrieval in SHG FROG for trains of stable pulse shapes, even in the presence of noise,
but also does so for unstable pulse trains and so reliably distinguishes between trains of
stable and unstable pulse shapes. It also provides a reasonable estimate of the average
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pulse length, spectral width, and time-bandwidth product (TBPrms) in the train. This
is the case because the RANA approach is extremely reliable and, in studies involving
tens of thousands of simulated pulses, even in the presence of significant noise, has never
stagnated. Specifically, we showed that it also did not stagnate even in the presence of
pulse-shape instability [53]. It also provided many of the characteristics of a “typical”
pulse in the unstable train [63] (although it tended to underestimate the amount of typical
pulse structure).

A quick review of the RANA approach [60–62] may be helpful at this point. It is not a
pulse-retrieval algorithm in the usual sense. Rather, it is an approach that uses an existing
algorithm (here the standard generalized projections algorithm) but takes advantage of
the realization that one can actually retrieve an excellent approximate pulse spectrum
directly from the measured trace. It then uses a “multi-grid” approach, which means using
a small subset of the trace points in the first iterations of the algorithm, then more for later
iterations, and the full dataset only for the final few iterations. It also continually discards
poorer results along the way. It is illustrated in Figure 1.
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Anyway, an analogous never-stagnating algorithm—even in the presence of instability—
is also highly desirable for the versions of FROG that are generally used to measure amplified
pulses. These include the polarization-gating (PG) and transient-grating (TG) FROG variants
(which are highly desirable because they eliminate the direction-of-time ambiguity of SHG
FROG). Additionally, PG FROG is automatically phase-matched, and TG FROG is broadly
phase-matched, so both are not usually limited by the pulse’s bandwidth.

PG FROG and the more common version of TG FROG are mathematically equivalent.
The mathematical relation for their measured trace is:

IPG/TG
FROG (ω, τ) =

∣∣∣∣∫ ∞

−∞
E(t)|E(t − τ)|2 exp(−iωt) dt

∣∣∣∣2 (1)
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where E(t) is the pulse’s complex electric field as a function of time, t. Also, ω is the angular
frequency, and τ is the delay between the pulses.

As a result, as we did for SHG FROG, we here simulate trains of unstable complex
pulses measured by PG and TG FROG using the analogous RANA approach. And we
compare the performance of the RANA approach to that of the well-known generalized
projections (GP) algorithm without the RANA improvements for these two FROG beam
geometries. We find, for these FROG variations, that the standard GP algorithm also often
fails to converge for unstable pulse trains (as it occasionally does for complex stable ones),
yielding variable and hence potentially confusing trace discrepancies. As a result, it is an
imperfect indicator of instability. But we find that the RANA approach, on the other hand,
yields minimal trace discrepancies for all the cases considered, that is, zero stagnations,
even for highly unstable pulse trains. It also yields accurate pulse parameters, as well as
much of the structure of a typical pulse. We conclude that PG and TG FROG, coupled with
the RANA approach, like SHG FROG with RANA, provide highly reliable indicators of
pulse-shape instability. Moreover, we find that PG/TG FROG yields an even better estimate
of a typical pulse in the train, even in cases of high instability.

2. Simulations
For better comparison with our previous work on SHG FROG, we used the same

simulated test pulses as in those previous simulations, in which we generated three pulse
trains, each containing 5000 unique pulses, as discussed in that work [59]. Each pulse was
constructed with a stable short pulse plus a longer unstable component [53]. The temporal
full width at half-maximum (FWHM) of the stable component was set at 12 fs for all three
trains. Because the random components were necessarily longer, they were assigned higher
energies before being added to the stable train, resulting in average temporal FWHMs of
26, 54, and 108 fs for the unstable trains. The pulse energies were then tailored to match
a normal distribution with a coefficient of variation of 10%. Simulations of PG and TG
FROG measurements were created by taking the mean of the individual pulses in each of
the three trains. Additionally, 3% additive and 5% multiplicative noise [64] were applied to
the traces. Also, before the retrieval process, the random trace noise was suppressed using
the same preprocessing techniques as are always performed when retrieving pulses from
experimental traces [57].

We generated three multi-shot simulated measured PG/TG FROG traces by adding
together the 5000 traces of all the pulses for each of the three trains. We then retrieved
pulses from the three resulting traces using both the standard GP algorithm [57] and the
RANA approach [61] (which incorporated the GP algorithm), each with 100 different initial
guesses. For the pulse trains with average temporal FWHMs of 26, 54, and 108 fs, we used
trace sizes of 128 × 128, 256 × 256, and 512 × 512, respectively, ensuring that the intensities
at the trace perimeters were less than 10−4 of the maximum intensity. We then calculated
the G and G’ errors (non-normalized and normalized rms difference between measured
and retrieved traces, respectively), the TBPrms, and the temporal FWHMs of the retrieved
fields for the three unstable trains. The maximum number of iterations was set to 1500
for the GP algorithm and 375 for the RANA approach. Iterations were stopped when the
average change in G error values over the previous 10 iterations was less than 10−7.

We evaluated the performance of the GP and RANA approaches by comparing their G’
errors. Recall that RANA involves obtaining a significantly improved initial guess (IG) for
the pulse spectrum directly from the measured trace and also using a multi-grid approach
for the iterations, using only small numbers of the trace data points for early iterations
and only using the entire trace for the final few [61]. The quantity of first guesses and
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iterations are shown horizontally in Table 1. Each row indicates the values used for a
different pulse train.

Table 1. Parameters used to retrieve trains with trace sizes 128 × 128 (26 fs pulse train), 256 × 256
(54 fs pulse train), and 512 × 512 (108 fs pulse train). The abbreviation IG in the table indicates
“initial guess”.

N
# of IGs N/4
× N/4 Array

(RANA)

# of Iterations
N/4 × N/4 Array

(RANA)

# of IGs N/2
× N/2 Array

(RANA)

# of Iterations
N/2 × N/2 Array

(RANA)

# of IGs N ×
N Array
(RANA)

Minimum G’
Error

128 20 40 12 35 4 ~0.2
256 32 40 16 35 4 ~0.3
512 48 55 24 45 4 ~0.4

3. Results
As mentioned earlier, if an algorithm reliably converges, even in the presence of

instability, we would expect it to achieve the minimum G or G’ error for all reasonable
initial guesses. If not, then we would expect to see variations in these values depending on
the initial guess. Figure 2 depicts all the G’ errors obtained from 100 runs using both the
standard GP algorithm and RANA approach on noisy traces.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 8 of 16 
 

 

Figure 2. G’ errors for retrieval of three noisy PG/TG FROG traces, which are contaminated with 3% 
additive and 5% multiplicative noise for three unstable pulse trains with an average temporal 
FWHM of (a) 26 fs, (b) 54 fs, and (c) 108 fs. The G’ errors are obtained from pulse recovery over 100 
runs using the RANA approach (blue triangles) and the standard GP algorithm (red circles) on 
noise-filtered traces. The RANA approach consistently achieves the minimum G’ error, whereas the 
GP algorithm alone does not, necessitating additional algorithm runs in practice. In all six cases, the 
impact of random trace noise is small. On the other hand, in all cases, the effects of pulse-shape 
instability dominate, yielding the resulting large values of G’. However, stagnation contributes in-
creasingly to the resulting values of G’ for the standard GP algorithm as instability increases. On the 
other hand, there is a negligible contribution to G’ from stagnation in all three RANA cases. This is 
the main result of this work. 

Figure 3a shows the resulting multi-shot trace of train #3. Note the obvious thin ver-
tical line in it, i.e., the coherent artifact, which is intimately related to that of autocorrela-
tion (recall that FROG is a spectrally resolved autocorrelation). Of course, while FROG 
traces exhibit this artifact, this does not pose a problem in FROG, first because its presence 
alerts the algorithm and the user (as for autocorrelation) to the instability, and our results 
confirm this. Also, as such an artifact cannot occur in a stable-pulse or single-pulse FROG 
trace (unlike autocorrelation), all FROG algorithms necessarily ignore it, using it and other 
information in the trace to retrieve the best possible typical pulse, as we found in our 
earlier work for SHG FROG [59]. This is also illustrated in the worst-case retrieved traces 
for both algorithms we studied, shown in Figure 3b,c, where no such vertical line appears 
for either algorithm. In other words, even in the worst cases, no such artifact occurs in 
retrieved traces. Do note, however, that the standard GP algorithm is somewhat confused 
by this effect and retrieves a pulse with a larger area, that is, a larger TBP. This occurs, not 
only for the worst case but also for the average retrieved pulse for GP. The RANA ap-
proach does much better and returns fairly accurate TBPs in all three cases. 

Figure 3d–g shows every retrieved pulse field using both the GP algorithm (d,f) and 
the RANA approach (e,g) from a randomly chosen noisy trace of train #3, with 108 fs av-
erage temporal FWHM. The standard GP algorithm yields a variety of pulse shapes, based 

Figure 2. G’ errors for retrieval of three noisy PG/TG FROG traces, which are contaminated with 3%
additive and 5% multiplicative noise for three unstable pulse trains with an average temporal FWHM
of (a) 26 fs, (b) 54 fs, and (c) 108 fs. The G’ errors are obtained from pulse recovery over 100 runs using
the RANA approach (blue triangles) and the standard GP algorithm (red circles) on noise-filtered
traces. The RANA approach consistently achieves the minimum G’ error, whereas the GP algorithm
alone does not, necessitating additional algorithm runs in practice. In all six cases, the impact of
random trace noise is small. On the other hand, in all cases, the effects of pulse-shape instability
dominate, yielding the resulting large values of G’. However, stagnation contributes increasingly to
the resulting values of G’ for the standard GP algorithm as instability increases. On the other hand,
there is a negligible contribution to G’ from stagnation in all three RANA cases. This is the main
result of this work.
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These results clearly illustrate that the RANA approach converges to the smallest
value of G’ for all runs and for all instability values. In other words, it converged in all
cases. In contrast, the standard GP algorithm does fairly well for the least unstable pulse
train, but, for increasing instability, it shows significant variability in the resulting G’ errors,
often requiring multiple attempts to achieve the minimum achievable G’ error. For pulse
trains with an average temporal FWHM of 26 fs, the standard GP algorithm successfully
converged to acceptable pulses with traces closely matching the measured ones in 92%
of the trials. This performance decreased to 86% and 44% for pulse trains with average
FWHMs of 54 fs and 108 fs, respectively, that is, more instability. While this performance is
not perfect and quite undesirable for the less stable trains, it is nevertheless considerably
better than that of GP for SHG FROG that we found in our previous study [59].

It is important to note that, in our studies, the impact of trace noise was minor
compared to that of pulse-shape instability. As is well known, random noise in FROG traces
can be minimized using simple preprocessing, including Fourier filtering and background
subtraction. In stable pulse trains, the converged G’ error should, and does, align with
the average random noise remaining in the measured trace after preprocessing; G’ errors
larger than this necessarily indicate pulse-train instability, at least for the RANA approach.
For the standard GP algorithm, these discrepancies are a sum of stagnation and instability
effects, and the best way to distinguish them using the standard GP algorithm at this time
appears to be running the algorithm many times and using the result with the smallest G
or G’ error, as we have done here and as is often done in practice. Of course, this is far less
desirable than running a more reliable algorithm, such as RANA, only once.

Figure 3a shows the resulting multi-shot trace of train #3. Note the obvious thin vertical
line in it, i.e., the coherent artifact, which is intimately related to that of autocorrelation
(recall that FROG is a spectrally resolved autocorrelation). Of course, while FROG traces
exhibit this artifact, this does not pose a problem in FROG, first because its presence alerts
the algorithm and the user (as for autocorrelation) to the instability, and our results confirm
this. Also, as such an artifact cannot occur in a stable-pulse or single-pulse FROG trace
(unlike autocorrelation), all FROG algorithms necessarily ignore it, using it and other
information in the trace to retrieve the best possible typical pulse, as we found in our earlier
work for SHG FROG [59]. This is also illustrated in the worst-case retrieved traces for both
algorithms we studied, shown in Figure 3b,c, where no such vertical line appears for either
algorithm. In other words, even in the worst cases, no such artifact occurs in retrieved
traces. Do note, however, that the standard GP algorithm is somewhat confused by this
effect and retrieves a pulse with a larger area, that is, a larger TBP. This occurs, not only for
the worst case but also for the average retrieved pulse for GP. The RANA approach does
much better and returns fairly accurate TBPs in all three cases.

Figure 3d–g shows every retrieved pulse field using both the GP algorithm (d,f) and
the RANA approach (e,g) from a randomly chosen noisy trace of train #3, with 108 fs
average temporal FWHM. The standard GP algorithm yields a variety of pulse shapes,
based to some extent on the initial guess, with GP-retrieved pulses showing a large range
of variations in the temporal and spectral FWHMs. Additionally, the worst-case (and
many other unshown) GP-retrieved traces bear no resemblance to the measured trace. In
contrast, pulses retrieved using the RANA approach, although somewhat less structured
than the actual pulses, do show some of the typical pulse structure and have pulse lengths
and spectral widths that closely match those of the measured pulses in the unstable train.
Although we should have no expectation of convergence to identical pulses on all runs
of any algorithm in the presence of instability, when the trace corresponds to no single
pulse, impressively, the maximum and minimum pulse lengths retrieved by RANA are
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quite similar, indicating that, even in the presence of instability, it achieves a reasonable
“typical” pulse length.
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Figure 3. (a) The trace generated by the unstable train of pulses with an average temporal FWHM of
108 fs. Note the narrow coherent artifact centered at zero delay. (b) The reconstructed trace obtained
using the GP algorithm for the “worst-case retrieval”, for which the G’ error is the largest. (c) The
“worst-case” retrieval from the use of the RANA approach. Note the much smaller trace area and
hence much smaller TBP for the RANA approach. (d,e) Two retrieved temporal intensities (both
shown as dashed black and red dashed curves and corresponding to the maximum and minimum
retrieved FWHMs), and all the retrieved phases (blue) for the GP algorithm (d) and RANA approach
(e) are shown. Note the large differences between the two intensity curves for the GP algorithm in
(d) and the much smaller, essentially indistinguishable intensity curves for the RANA approach in
(e). The phase curves have arbitrary constants added to them in order to separate them, and those
grouped together at the top of (d) correspond to the clearly stagnated results and are more complex
on average than the converged results shown below them. (f,g) Analogous quantities for the spectra,
except using green instead of red. In both figures, the spectra are difficult to distinguish because the
stagnation in the GP approach is mainly manifested in the spectral phases. These effects will be more
evident in the retrieved TBPs.

Table 2 shows the average G′ errors and TBPs for the 100 RANA and GP retrievals
from the various FROG traces. For the least unstable case, the two approaches yield similar
results, indicating that the standard GP algorithm performs reasonably well for somewhat
complex and unstable pulse trains. But, for the two most unstable trains, RANA yields
smaller TBPs and standard deviations than GP, indicating both better convergence and also
less variations in the retrieved pulses. The larger standard deviations of the TBP values of
the standard GP algorithm indicate that, when convergence is not achieved, the retrieved
fields exhibit significant variations, resulting in inconsistent and arguably unreliable results.
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Table 2. The average G’ errors in 100 retrievals using the GP algorithm and RANA approach from
noisy PG/TG FROG traces and the TBPrms of all the retrieved fields. Note that the G’ errors and TBPs
for RANA tend to be consistently less than those for the standard GP algorithm.

G′, GP G′, RANA TBP, GP TBP, RANA

Train #1 0.188 ± 0.005 0.182 ± 0.003 1.79 ± 0.07 1.80 ± 0.08

Train #2 0.311 ± 0.027 0.289 ± 0.006 5.51 ± 0.43 5.28 ± 0.28

Train #3 0.443 ± 0.048 0.377 ± 0.009 12.6 ± 1.4 10.4 ± 0.7

Figure 4 plots the RMS time-bandwidth product (TBPrms) against the G’ error for
all of the retrieved pulses using both the GP and RANA approach. Because we used
the same pulse trains in this simulation as in our previous work, the average theoretical
pulse length and TBPrms values for the fluctuating pulses of the trains were the same, with
averages of τFWHM = 26, 54, and 108 fs and TBPrms = 1.97, 4.75, and 9.28, respectively.
When convergence is achieved with either the RANA approach or the GP algorithm, the
TBPrms values align well with the actual values. However, Figure 4 also indicates that
stagnated results from using the standard GP algorithm can lead to TBPrms values that do
not accurately reflect the average TBPrms of the pulses within the train, with discrepancies
increasing with increasing instability.
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As discussed in our previous work [62], the RANA approach uses four directly re-
trieved approximate spectra to produce the initial guesses from the measured trace for
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input into the iterative process, and we also did this in this study of PG/TG FROG. Note
that these directly retrieved spectra serve only as initial guesses for the algorithm and need
not be very accurate. In the absence of instability, such spectra usually accurately approxi-
mate the pulse spectrum, but, in the presence of instability, they instead reflect the average
spectrum. This is to be expected, but it could, in principle, degrade the performance of the
RANA approach. However, RANA’s other advantageous features appear to compensate
for this averaging. Also, the average spectrum, whose width is fairly accurate, is still a
better initial guess than noise, the usual initial guess for standard GP. Figure 5 plots the
average spectra of the trace along with the first choices among these four retrieved spectra.
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Figure 5. The first and second columns show the typical spectra for trains 1 (top) to 3 (bottom).
The third column plots the directly retrieved spectra from the marginal of the PG/TG FROG trace
(obtained in and required for the RANA approach) alongside the average spectra—i.e., the spec-
trometer measurement—for the three trains with average (a) τFWHM = 26 fs, (b) τFWHM = 54 fs, and
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spectra of the unstable pulse train.

It is important to note that the mean retrieval times for traces with instability are sig-
nificantly longer than those for stable trains for all algorithms. This is because convergence
rates are slower when the trace does not match an actual pulse, requiring more iterations
for the algorithm to converge. However, the average retrieval time for the RANA approach
is less than that for the GP algorithm, even in cases where the GP algorithm converges.

4. Conclusions
In this study, we explored the convergence behavior of the standard GP algorithm and

the recently introduced RANA approach for PG/TG FROG traces averaged over trains
of pulses with unstable shapes and hence with coherent artifacts. As expected, we found
that instability yields PG/TG FROG traces that do not correspond to traces from single
pulses, which implies that these techniques are very useful for identifying instability, in
addition to measuring the pulse intensity and phase vs. time. However, we found that
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the standard GP algorithm often fails to clearly distinguish between discrepancies caused
by instability artifacts and those due to algorithm stagnation, making it difficult for it
to identify instability accurately. This necessitates multiple retrieval attempts to find the
lowest G error, with no definitive way to determine if the discrepancies are due to instability
or algorithm stagnation.

In contrast, our results show that, for traces of trains with unstable pulse shapes, the
RANA-retrieved trace consistently achieves the minimum discrepancy with the measured
trace, resulting in the lowest G’ error, that is, converges in all cases that we considered. Thus,
the RANA approach, established to have 100% reliability with stable pulses, also proves
highly effective in evaluating pulse-train stability. This reliable convergence indicates
that any discrepancies between the measured and retrieved traces are due to pulse-shape
fluctuations, and not algorithm stagnation. Moreover, the retrieved field accurately reflects
the average pulse length, spectral width, and TBP of the pulses in the train, providing the
best available depiction of a typical pulse, although with somewhat less structure. It also
provides some of the structure present in a typical pulse in the train.

In summary, the RANA approach offers the most reliable FROG pulse-retrieval ap-
proach for both stable and unstable pulse trains, making it a highly reliable gauge of the
average pulse length, TBP, and pulse-train stability or instability and, of course, the precise
pulse intensity and phase vs. time and frequency for stable pulse trains. As no other
pulse-measurement technique has, to our knowledge, been shown to possess all of these
characteristics, RANA (in particular, in conjunction with PG/TG FROG) yields the best
general performance of all existing pulse-measurement techniques.

As an aside, we note that there are many sources of pulse-shape instability, and each
is likely to have its own shape probability distribution. But, at this point in time, the goal
is simply to reliably identify the presence of instability so that future researchers may be
able to sort out the actual cause(s) and pulse-shape probability distribution in a given
case. The RANA approach is only an algorithmic approach for retrieving the best possible
pulse from a given trace, even in the presence of instability, and to indicate the presence of
instability in the pulse shapes, as we show here. It is not an attempt to provide a model for
the instability itself, rather it is merely an indicator of its presence. It is, however, the first
algorithm to reliably establish the presence or absence of instability and so is the first step
toward identifying the instability, no matter what form the instability may take.

Finally, it is worth considering possible future efforts on this subject. First, performing
this analysis on larger sets of pulse trains would be helpful, as is always the case for
iterative algorithms. Also, additional versions of FROG, including those that use the
nonlinear processes, self-diffraction (which is mathematically equivalent to the alternative
arrangement of TG FROG, not considered herein), and third-harmonic generation, would
also benefit greatly from the RANA approach, and their ability to reliably discern instability
should be determined. Also, the RANA approach can utilize any FROG algorithm (not
just GP) as its kernel, and we believe that algorithm performance for both stable and
unstable trains would be vastly improved using it in conjunction with those algorithms.
Lastly, no technique, including that described herein, can determine the precise type of
instability present in the pulse train. Controlled experiments could, in principle, be done
using ultrafast electro-optic phase modulators, but they would be difficult. Alternatively,
lasers perturbed in known manners could be used. As the parameter space involved in
such a study is vast, this is a challenge that is unlikely to be achieved any time soon, but
we mention it here to inspire future generations.
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