
Relative-phase ambiguities in measurements of
ultrashort pulses with

well-separated multiple frequency components

Dorine Keusters and Howe-Siang Tan

Department of Chemistry and the Center for Ultrafast Laser Applications, Princeton University,
Princeton, New Jersey 08544

Patrick O’Shea, Erik Zeek, and Rick Trebino

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

Warren S. Warren

Department of Chemistry and the Center for Ultrafast Laser Applications, Princeton University,
Princeton, New Jersey 08544

Received January 3, 2003; revised manuscript received April 25, 2003

Ultrashort-pulse characterization techniques, such as the numerous variants of frequency-resolved optical gat-
ing (FROG) and spectral phase interferometry for direct electric-field reconstruction, fail to fully determine the
relative phases of well-separated frequency components. If well-separated frequency components are also
well separated in time, the cross-correlation variants (e.g., XFROG) succeed, but only if short, well-
characterized gate pulses are used. © 2003 Optical Society of America

OCIS codes: 320.7100, 320.5540.

1. INTRODUCTION
The past decade has seen great progress in the comple-
mentary fields of femtosecond shaped-pulse generation1,2

and shaped-pulse measurement.3–6 The most common
pulse-shaping methods, which operate in the frequency
domain, can independently modulate more than 1000 dif-
ferent frequency components, potentially yielding highly
complex pulses. Even without such modulation methods,
pulses with high complexity arise naturally as the result
of some physical processes, such as continuum genera-
tion. Fortunately, pulse-shape detection methods have
also evolved greatly in recent years, and pulses of very
great complexity (time–bandwidth product �1000) were
recently characterized.7

Traditional measurement methods, such as taking the
autocorrelation and the pulse spectrum, give only a gross
approximation of the generated pulse shape. Measure-
ment of time–frequency profiles, first proposed by Treacy8

and others, provided a large step forward. The approach
was dramatically simplified with the introduction of self-
referenced techniques, such as that of Chilla and
Martı́nez9 and frequency-resolved optical gating (FROG)
with its algorithms to extract the pulse shape.

All these methods [and other variants such as self-
diffraction and polarization-gate FROG, the use of a fre-
quency filter in one arm,10,11 and spectral phase interfer-
ometry for direct electric-field reconstruction (SPIDER)5]
have inherent ambiguities. For example, all such self-
referenced techniques fail to determine the absolute
phase and the arrival time—the first two coefficients in

the Taylor series expansion of the spectral phase. These
two ambiguities are actually usually desirable. The ab-
solute phase is random in fluorescent pulses and prevents
techniques such as spectral interferometry, that do mea-
sure absolute phase relative to that of another pulse, from
measuring fluorescence on a multishot basis. Measure-
ment of the pulses’ arrival times are also generally not of
interest because few researchers care about the distance
between the laser and the pulse-measurement device or
desire to stabilize this quantity interferometrically.

Other ambiguities are potentially more serious. For
example, the most commonly used version of FROG,
second-harmonic generation (SHG) FROG,12 has a two-
fold ambiguity: A pulse and its time-reversed replica
give the same trace.13 This ambiguity can be resolved by
addition of a trailing satellite pulse or by use of higher-
order variants such as self-diffraction and polarization-
gate FROG, or with SPIDER.5 Determining the relative
phase of two pulses with the same center frequency but a
large time separation, which is important for coherent
manipulations, also provides a challenge for some tech-
niques, despite the fact that this information is contained
directly in the linear spectrum. The relative phase is
completely unknown in spectrograms generated by the
cross-correlated version of FROG14,15 (XFROG) when the
gate pulse is short compared with the temporal separa-
tion. The self-referenced SHG FROG has a twofold am-
biguity for such pulses: If the relative phase is �, then
the value ��� also yields the same SHG FROG trace.
Third-harmonic-generation (THG) FROG has a threefold
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ambiguity in the relative phase of well-separated tempo-
ral components: � � �2�/3 also yield the same THG
FROG trace (thus a combination of methods can resolve
this ambiguity). Other versions of FROG, however,
uniquely determine this relative phase.

In this paper we treat the waveforms that contain sig-
nificant gaps in their frequency profiles,17 expanding on
the preliminary results presented in Ref. 16. Such wave-
forms are simply made and have some straightforward
applications (for example, coherent pumping of Raman
transitions). Already, single-color phase-locked pulses
have been used in various kinds of nonlinear spectro-
scopic studies, such as the detection of optical free-
induction decay,18 phase-locked pump–probe,19 and het-
erodyne detected photon echo.20 The next step might be
to use phase-locked multicolor pulses. Such pulses may
also be used for optimal control of chemical dynamics.
For example, in a pump–dump experiment, theoretical
studies21 have indicated that, for control of population
transfer between states of a chemical system, the relative
phase of the two colored pump and dump pulses is impor-
tant. To that effect, a recent Letter reported the genera-
tion of such pulses by use of noncollinear optical amplifi-
cation of shaped white-light continua.22 In optical
communications, dense wavelength-division multiplexing
with ultrafast pulses inherently involves generating pre-
cisely this type of waveform,23,24 and complex time–
frequency patterns with gaps are useful for suppression of
multipath interference.25 Unlike for same-frequency
pulses, the relative phase of frequency-separated pulses
does not show up in the linear spectrum, even if the
pulses overlap in time.

It was previously noted3 that the spectrogram is math-
ematically equivalent to the sonogram: Gating in the
time domain yields an expression that is equivalent to
that obtained by gating in the frequency domain, except
for a reversed argument in the gate function. Thus it
would seem reasonable that a similar ability to measure
the relative phase (with the occasional ambiguities
touched on above) is possible in the frequency domain for
well-separated frequency components. We show here,
however, that none of the published self-referenced meth-
ods determines the relative phase of well-separated fre-
quency components. Furthermore, if these well-
separated frequency components are also well separated
in time, the cross-correlation variants (e.g., XFROG) that
use independent pulses as gates fail as well, unless the
gating or spectral interference occurs with short, well-
characterized pulses (which might be characterized by a
self-referenced method) whose spectral widths span the
spectral distance between the components. This is
equivalent to requiring that the gate or reference pulse be
sufficiently short to resolve the temporal structure in the
pulse that results from the well-separated frequency com-
ponents of the pulse to be measured. This constraint is
analogous to that on the gate pulse in XFROG for mea-
suring pulses separated in time. We also derive specific
conditions under which modified versions of the cross-
referenced techniques do give full pulse characterization.

At a qualitative level, the existence of ambiguities in
characterizing the time–frequency profiles of frequency-
separated pulses is easy to understand. Without loss of

generality, any arbitrary waveform can be written as a
combination of amplitude and phase modulation:

E��� � Ã���exp�i�̃���� � c.c., (1)

where Ã(�) is a real nonnegative function and �̃(�) is the
frequency-dependent phase. For most pulse-
characterization methods, however, it is more intuitive to
describe the pulse shape by amplitudes A(�) of its fre-
quency components and their arrival times t(�), where
t(�) � d�̃(�)/d�. From this relationship, knowledge of
�(�) in a small interval about � is all that is required for
extraction of t(�). However, extracting �(�) from t(�)
requires an integral over all times before �—including
frequencies at which the waveform might actually vanish.
Thus reproducing the actual waveform (in particular, the
relative phase of two different parts of the pulse) can
present inherent difficulties if the experimental informa-
tion is present as a time–frequency profile, such as in a
sonogram.

It is less obvious that such ambiguities persist for
FROG and other methods that use the entire pulse as its
own reference. To demonstrate the ambiguities that
arise in the characterization of multifrequency phase-
locked pulses (and in general any pulse containing well-
separated frequency components), we use a two-
component pulse that can be described by (see also
Appendix A)

E�t � � AA�t �exp��i�At �exp�i	A�

� AB�t � T �exp��i�Bt �exp�i	B�, (2)

E��� � �ÃA�� � �A��exp�i	̃A�� � �A��exp�i	A�

� �ÃB�� � �B��exp�i	̃B�� � �B��

� exp�i	B�, (3)

where �Ã(�)�exp�i�̃(�)� � 
 dtA(t)exp(i�t).
Thus, this pulse contains one component, centered

about � � �A , with spectral width �� and arriving at t
� 0 with pulse length �t, followed after time T by the
second component, centered about � � �B . The two
components have a well-defined phase difference 	A
� 	B . For later convenience, we split the phase in the
frequency domain into two parts, �̃(�) � 	̃(�) � 	X ,
where the first term represents the phase within each
component and 	X represents the overall phase of compo-
nent X.

The question that we investigate in this paper is under
what circumstances current pulse-characterization tech-
niques are capable of determining phase difference 	A
� 	B between the two components of the pulse. For
most of the examples in this paper we use a pulse consist-
ing of two Gaussian components:

E�t � � exp���2t2�exp��i�At �exp�i	A�

� exp���2�t � T �2�exp��i�Bt �exp�i	B�.

(4)

However, the arguments made here can readily be ex-
tended to other shapes and to pulses consisting of mul-
tiple well-separated spectral components.
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If the pulses are well separated in both the time and
the frequency domains (i.e., 
� � �A � �B � �� and T
� �t), then the temporal intensity profile, the autocorre-
lation, and the spectrum are all identical for all phase dif-
ferences 	A � 	B between the components of the pulse
[Fig. 1(a)]. For pulses separated in the frequency domain
but with overlap in the time domain (i.e., T 	 �t), the
phase difference 	 � 	A � 	B is reflected in the tempo-
ral intensity profile; however, in the simplest pulse-
characterization methods, the autocorrelation and the
spectrum, this relative phase is not detectable [Fig. 1(b)].
Only for pulses that overlap in the frequency domain
(�A � �B 	 ��) can the overall phase difference be
readily detected in the spectrum [Fig. 1(c)]. Therefore in
this paper we concentrate on the first two cases, i.e.,
pulses that are well separated in the frequency domain.
In the next sections we discuss the performance of several
characterization techniques (FROG and SPIDER and
their derivatives) on the types of pulse described above.

2. SECOND-HARMONIC GENERATION
FROG
The spectrogram obtained in SHG FROG is given by3

ISHG��, �� � � � E�t �E�t � ��exp�i�t �dt�2

. (5)

Using Eq. (2) for E(t) yields for the FROG trace for this
pulse

ISHG��, �� � �exp�i�A��exp�2i	A�

� � AA�t �AA�t � ��exp�i�� � 2�A�t�dt

� exp�i�B��exp�i�	A � 	B��

� � AA�t �AB�t � T � ��

� exp�i�� � �A � �B�t�dt

� exp�i�A��exp�i�	A � 	B��

� � AB�t � T �AA�t � ��

� exp�i�� � �A � �B�t�dt

� exp�i�B��exp�2i	B�

� � AB�t � T �AB�t � T � ��

� exp�i�� � 2�B�t�dt�2

. (6)

Fig. 1. Comparison of the spectrum, the intensity profile, and
autocorrelation of pulses described by Eq. (4) for 	A � 	B � 0
(solid curves) and 	A � 	B � 0.6� (dashed curves). (a) Compo-
nents of a pulse are well separated in both the time and the fre-
quency domains (T � �t and 
� � ��). (b) Components over-
lap in the time domain but are well separated in the frequency
domain (T � 0 and 
� � ��). (c) Components are well sepa-
rated in the time domain but overlap in the frequency domain
(T � �t and 
� � 0). If the components do not overlap in the
frequency domain [(a) and (b)], then the spectrum and the auto-
correlation are identical for every 	A � 	B . Only if the compo-
nents of the pulse overlap in the frequency domain [(c)] can the
phase relation between the components be determined from the
spectrum.

Fig. 2. Comparison of SHG FROG spectrograms for pulses de-
scribed by Eq. (4) with 	A � 	B � 0 (left) and 	A � 	B � 0.6�
(right). (a) SHG FROG spectrogram for a pulse with compo-
nents well separated in the time domain and in the frequency do-
main. (b) Spectrogram for a pulse with components well sepa-
rated in the frequency domain but overlapping in the time
domain. (c) Spectrogram for a pulse with components well sepa-
rated in the time domain but overlapping in the frequency do-
main. The spectrograms for pulses that are well separated in
the frequency domain [(a) and (b)] are identical for all phase dif-
ferences 	A � 	B . Only if the pulses overlap in the frequency
domain [(c)] can the SHG FROG determine phase difference 	A
� 	B.
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In Eq. (6) the first term results in a peak centered about
� � 2�A and � � 0; the second term gives a peak cen-
tered about � � �A � �B and � � �T; the third term re-
sults in a peak about � � �A � �B and � � T, and the
fourth term gives a peak centered about � � 2�B and �
� 0 [Fig. 2(a)]. For the most commonly encountered
case in which �A � �B , the beating between the first and
the fourth terms creates fringes proportional to 1
� cos�(� � 2�A)T � 2(	B � 	A)� and, subject to the
�-phase ambiguity, the phase relation can be readily re-
covered [Fig. 2(c)]. If, however, the components of the
pulse are well separated in the frequency domain, then
there are no cross terms among these three groups of
terms, so interference occurs only between the second and
third terms in Eq. (6), and then only if the two compo-
nents overlap in the time domain (i.e., T 
 �t). But, as
can be seen, both terms have the same dependence on
phases 	A and 	B . In this case the position of the inter-
ference fringes is proportional to 1 � cos�(�A � �B)�� and
depends only on frequency difference �A � �B , not on
relative phase 	A � 	B [Fig. 2(b)], so the retrieval algo-
rithm cannot distinguish among different values of the
phase difference.

The fact that FROG can readily determine the phase
difference between two components of a pulse that are
separated in the time domain, but not between two com-
ponents separated in the frequency domain, may be sur-
prising because the SHG FROG spectrogram can be re-

written in the frequency domain as

ISHG��, �� � � � E���E�� � ��exp�i���d��2

, (7)

which is similar to the expression given in Eq. (5). The
main difference between pulses with components sepa-

rated in the frequency domain and those with com-
ponents separated in the time domain lies in which terms
contribute to the same peak in the spectrogram. For
components separated in the time domain, terms gener-
ated from component A interacting with its delayed copy
A, and component B interacting with the delayed copy of
component B, contribute to the central term at �
� 0. As these two terms have different dependence on
	A and 	B , an interference pattern results that depends
on the phase difference 	 � 	A � 	B . If the compo-
nents are separated in the frequency domain, it is the
contributions that result from the cross terms, i.e., com-
ponent A interacting with B and vice versa, that contrib-
ute to the central peak at � � �A � �B , and as a result
all terms that contribute to this central peak have the
same dependence on phases 	A and 	B , and the spectro-
gram is independent of 	A � 	B .

3. POLARIZATION-GATE FROG
The spectrogram for polarization-gate (PG) FROG can be
described as3

IPG��, �� � � � E�t ��E�t � ���2 exp�i�t �dt�. (8)

For the pulse described by Eq. (2) the spectrogram be-
comes

As can be seen from Eq. (9) the first three terms result in
a peak centered about �A , the second three terms give a
peak centered about �B , the seventh term gives a peak
about 2�A � �B , and finally the eighth term yields a
peak about 2�B � �A . If the frequencies �A and �B of
the two components are well separated, the cross terms

IPG��, �� � �exp�i	A�� AA�t ��AA�t � ���2exp�i�� � �A�t�dt

� exp�i	A�� AA�t ��AB�t � T � ���2 exp�i�� � �A�t�dt

� exp�i��A � �B���exp�i	A�� AB�t � T �AA�t � ��AB*�t � T � ��exp�i�� � �A�t�dt

� exp�i	B�� AB�t � T ��AB�t � T � ���2 exp�i�� � �B�t�dt

� exp�i	B�� AB�t � T ��AA�t � ���2 exp�i�� � �B�t�dt

� exp�i��B � �A���exp�i	B�� AA�t �AB�t � T � ��AA*�t � ��exp�i�� � �B�t�dt

� exp�i��A � �B���exp�i�2	A � 	B��� AA�t �AA�t � ��AB*�t � T � ��exp�i�� � �2�A � �B��t�dt

� exp�i��B � �A���exp�i�2	B � 	A��� AB�t � T �AB�t � T � ��

� AA*�t � ��exp{i�� � �2�B � �A�t�dt�2

. (9)
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between these groups will vanish. As for the SHG spec-
trogram, the terms that contribute to a peak at the same
spectral position in the spectrogram have the same de-
pendence on phases 	A and 	B , so if the peaks are well
separated the intensity of the spectrogram will not de-
pend on the relative phase 	A � 	B [Figs. 3(a) and 3(b)].
Only if the components of the pulse overlap in the fre-
quency domain can the relative phase be determined
[Figs. 3(c) and 3(d)]. The same is true for all other forms

of self-referenced FROG because, in all these techniques,
all terms that contribute at a certain spectral position
must have been generated from the same set of compo-
nents of the pulse and thus must have the same depen-
dence on 	A and 	B . In other words, a term that con-
tributes to the spectrogram at position x�A � y�B will
always have the phase dependence x	A � y	B . Thus,
for all types of self-referenced FROG, so long as there is
no overlap between the individual peaks in the
spectrogram26 this spectrogram will be independent of
the phase relation between the spectral components of the
pulse.

4. SPIDER
The SPIDER technique fares no better. The interfero-
gram obtained by SPIDER5 is given by

ISPIDER���

� �E�� � �0�E��0� � E�� � �0 � ��E��0 � ��

� exp��i	S�exp�i����2

� �E�� � �0�E��0��2

� �E�� � �0 � ��E��0 � ���2

� 2 Re�E�� � �0�E*�� � �0 � ��E��0�

� E*��0 � ��exp�i	S�exp��i����. (10)

In Eq. (10) it has been assumed that the stretched pulse is
stretched far enough that it is essentially monochromatic
over the duration of the probe pulse. � is the frequency
of the upconverted signal; �0 is this monochromatic fre-
quency of the stretched pulse at the time that it overlaps
the first copy of the test pulse. � � �/2� is the spectral
shear, which is related to delay � between the two copies
of the test pulse and to chirp parameter � of the stretched

pulse. Then �0 � � is the monochromatic frequency of
the stretched pulse at the time that the second copy of the
probe pulse arrives. 	S � �0� � � 2/4� is a constant
phase.

So long as I(�) is independent of 	A � 	B (i.e., when
the components are well separated in the frequency do-
main), the first two terms in Eq. (10) are independent of
the phases 	A and 	B . Using Eq. (3) in the third term of
Eq. (10) gives

It can be seen that there will be a signal only if �0 is close
to either �A or �B . Without loss of generality, in this ex-
ample we choose �0 close to �A , i.e., �0 � �A 	 ��. To
fulfill the requirement that � be smaller than the Nyquist
limit, �0 � � also has to be close to �A ; i.e., �0 � �
� �A 	 ��. Then both copies of the test pulse are up-
converted by a quasi-cw part of component A of the
stretched pulse, and Eq. (11) becomes

Fig. 3. Comparison of PG FROG spectrograms for pulses de-
scribed by Eq. (4). (a) PG FROG spectrogram for a pulse with
components separated both in the time domain and in the fre-
quency domain. (b) Spectrogram for a pulse with components
well separated in the frequency domain but arriving at the same
time. (c) Spectrogram for a pulse with components at the same
frequency but well separated in the time domain, with 	A � 	B
� 0. (d) Same as (c) but with 	A � 	B � 0.6�. The spectro-
grams for pulses well separated in the frequency domain [(a) and
(b)] are identical for all phase differences 	A � 	B . Only if the
pulses overlap in the frequency domain can the PG FROG deter-
mine the phase difference 	A � 	B .

2 Re(�ÃA�� � �A � �0�exp�i	̃A�� � �A � �0��exp�i	A� � ÃB�� � �B � �0�exp�i	̃B�� � �B � �0��exp�i	B��

� �ÃA�� � �A � �0 � ��exp��i	̃A�� � �A � �0 � ���exp��i	A�

� ÃB�� � �B � �0 � ��exp��i	̃B�� � �B � �0 � ���exp��i	B��

� �ÃA��0 � �A�exp�i	̃A��0 � �A��exp�i	A� � ÃB��0 � �B�exp�i	̃B��0 � �B��exp�i	B��

� �ÃA��0 � � � �A�exp��i	̃A��0 � � � �A��exp��i	A� � ÃB��0 � � � �B�

� exp��i	̃B��0 � � � �B�exp��i	B��exp�i	S�exp��i���). (11)
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The only nonzero contributions to Eq. (12) are given by
the first and fourth terms, which result in a signal cen-
tered about � � 2�A and � � �A � �B , respectively.
As can be seen from Eq. (12), both terms are independent
of 	A and 	B . The reason for this is that the two peaks
in the SPIDER spectrum are the SPIDER spectra of the
individual components of the pulse, but there is no part in
the spectrum that is generated by interference of the two
components. Thus in this case the relative phase within
each pulse, 	̃, can be determined accurately, but the over-
all phase difference between the two components remains
undetermined.

For larger spectral shear, i.e., when �0 � �A � �
� ��, in general there is no nonzero contribution to Eq.
(11) except when � is chosen such that the original test
pulse is upconverted by a quasi-cw part of component A of
the stretched pulse and the delayed copy is upconverted
by a part of component B of the stretched pulse, i.e., �0
� �A and �0 � � � �B . In that case, interference oc-
curs near frequency � � �A � �B between component B
of the original pulse upconverted by a quasi-cw part of
component A of the stretched pulse and component A of
the delayed copy upconverted by a quasi-cw part of com-
ponent B of the stretched pulse. However, just as for
FROG, the two interfering terms have the same depen-
dence on 	A and 	B , and this final interferogram is still
independent of 	A � 	B (see also the discussion in Sec-
tion 6 below).

From the discussion above it can be concluded that
none of the self-referencing techniques discussed is able
to detect the phase difference between two spectrally
separated parts of a laser pulse. However, spectral
interferometry27 is capable of retrieving the complete
phase of such a pulse, as long as a reference pulse is avail-
able that spectrally overlaps all the spectral components
of the pulse that needs to be characterized and is well
characterized, i.e., as long as complete phase and ampli-
tude information is available for this reference pulse.

Such a reference pulse is not always available; there-
fore in Sections 5 and 6 we consider whether XFROG14,15

and the cross-correlation version of SPIDER28,29 (XSPI-
DER) would impose less stringent requirements on the
reference pulse used.

5. XFROG
As an example of an XFROG technique, we discuss sum-
frequency generation (SFG) XFROG, but, as before, the

results apply to all the XFROG beam geometries. The
SFG XFROG interferogram can be written as14

IXSFG��, �� � � � E�t �EX�t � ��exp�i�t �dt�2

, (13)

where E(t) is the electric field of the pulse to be charac-
terized, i.e., the test pulse, and EX(t) is the electric field of
the reference pulse. It is assumed that both the phase
and the amplitude of this reference pulse are known.
Equation (6) now becomes

IXSFG��, �� � �exp�i�0��exp�i	A�� AA�t �AX�t � ��

� exp�i�� � �A � �0�t�dt

� exp�i�0��exp�i	B�� AB�t � T �

� AX�t � ��exp�i�� � �B � �0�t�dt�2

,

(14)

where �0 is now the center frequency of the reference.
This spectrogram will depend on the relative phase 	A
� 	B only if the cross terms in Eq. (14) are nonzero,
which means only if the two terms overlap both in the fre-
quency domain and in the time domain. If the two com-
ponents overlap in the time domain but not in the fre-
quency domain, the reference pulse must be broadband—
i.e., very short—with a maximum pulse length �tX
� 2�/
�. This is equivalent to the condition that the
reference pulse be able to resolve the temporally sinu-
soidal intensity variations that are due to the two fre-
quencies. Thus, if the components of the pulse overlap in
the time domain, such a short reference pulse will make it
possible to determine 	A � 	B [Figs. 4(a) and 4(b)].

If the frequency components in the pulse do not overlap
in time �T � �t in Eq. (2)], then a short reference pulse
will fail to connect the frequency components in delay,
and no interference will be observed [Fig. 4(c)]. What is
needed is a pulse that is ‘‘doubly broad,’’ that is, broad in
both frequency and time. Two examples of such doubly
broad pulses are a pulse train of short reference pulses
and a linearly chirped pulse. In both cases, however,

2 Re(�ÃA�� � �A � �0�exp�i	̃A�� � �A � �0��exp�i	A�ÃA�� � �A � �0 � ��exp��i	̃A�� � �A � �0 � ���

� exp��i	A� � ÃA�� � �A � �0�exp�i	̃A�� � �A � �0��exp�i	A�ÃB�� � �B � �0 � ��

� exp��i	̃B�� � �B � �0 � ���exp��i	B� � ÃB�� � �B � �0�exp�i	̃B�� � �B � �0��

� exp�i	B�ÃA�� � �A � �0 � ��exp��i	̃A�� � �A � �0 � ���exp��i	A� � ÃB�� � �B � �0�

� exp�i	̃B�� � �B � �0��exp�i	B� � ÃB�� � �B � �0 � ��exp��i	̃B�� � �B � �0 � ���exp��i	B��

� ÃA��0 � �A�exp�i	̃A��0 � �A��exp�i	A�ÃA��0 � � � �A�exp��i	̃A��0 � � � �A��

� exp��i	A�exp�i	S�exp��i���). (12)
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prior knowledge about the arrival time and frequencies of
the components is needed. For a linearly chirped pulse
the amount of chirp needs to be matched to the delay and
to the frequency difference between the components of the
test pulse. For example, if at a delay � component A
overlaps a part of the reference pulse centered about
�Aref , then the corresponding peak in the spectrogram
will be centered about �A � �Aref . Component B will
then overlap frequency �Bref � �Aref � �chirp , where

�chirp is determined by the amount of linear chirp im-
posed on the reference pulse and on the delay between
components A and B. Thus the peak in the spectrogram
that corresponds to component B will be centered about
�B � �Aref � �chirp . Information about phase difference
	A � 	B will be available only if these two peaks overlap
in the frequency domain, i.e., if �chirp � �A � �B . In
other words, the amount of chirp needs to be chosen care-
fully to ensure that the reference pulse connects the com-
ponents in both the time and the frequency domains. If
the chirp is chosen correctly the two peaks will overlap in
the spectrogram, and the resultant interference will re-
veal the phase difference, 	A � 	B [Fig. 5(b)]. If the
amount of chirp is too large or too small, then there will
be no overlap between the two peaks in the spectrogram,
and no information about 	A � 	B will be obtained [Figs.
5(a) and 5(c)].

In general, for a pulse with more than two components
whose spacings in time and frequency are uncorrelated, it
will be impossible to find a linearly chirped pulse that will
connect all the components. In that case, to obtain full
characterization, one would need to repeat the experi-
ment with a different chirp matched to each pair of com-
ponents in the pulse.

An alternative way to create a doubly broad pulse is to
use an etalon. The etalon increases the temporal width
of the pulse by introducing delayed replicas of the original
pulse into the beam while preserving the overall spectral
width of the original pulse. Care must be taken in the
selection of the etalon. If the etalon spacing is too great,
there will be dead spaces between the individual pulses of
the reference. These dead spaces would allow the indi-
vidual terms of Eq. (13) to occupy the same regions but
with zero signal overlap.

To summarize, if all spectral components of the pulse
arrive at a similar time, an XFROG measurement with a
well-characterized short pulse can determine the overall
phase relation among the components. In all other cases
it is, in principle, possible to determine the phase differ-
ence among the components by using a correctly chirped
reference pulse or pulse train. The requirements on the
reference pulse are then less stringent than in the case of
spectral interference because the reference pulse need not
have the same center frequency as the test pulse. But, in
addition to the requirement of large bandwidth, there are
now requirements on the pulse length: A transform-
limited short pulse is needed if the pulse components ar-
rive at the same time and a properly chirped pulse or
pulse train is needed if they arrive at different times.

6. XSPIDER
One obtains an XSPIDER28,29 spectrogram by sending the
test pulse through a Michelson interferometer to generate
a train of two test pulses, gating this train with a chirped
reference pulse, and then spectrally resolving the gated
pulse.

Assuming that a well-known reference pulse is avail-
able to provide the stretched pulse, the expression for the
XSPIDER spectrum becomes29

Fig. 4. Comparison of SFG XFROG spectrogram for pulses de-
scribed by Eq. (4). (a) SFG XFROG spectrogram for pulse with
components well separated in the frequency domain but overlap-
ping in time, with 	A � 	B � 0. (b) Same as (a) but with 	A
� 	B � 0.6�. Here a reference pulse is used that is just short
enough to cause the two peaks in the spectrogram to overlap
such that interference fringes can be observed. The position of
the fringes permits determination of 	A � 	B . If a longer ref-
erence is used, the two peaks in the spectrogram do not overlap,
and 	A � 	B cannot be determined. (c) The same reference as
for (a) and (b) was used but the components of the pulse were
well separated both in the time domain and in the frequency do-
main. Now the spectrogram is identical for all phase differences
	A � 	B .

Fig. 5. SFG XFROG diagram for the pulses depicted in Fig. 4(c)
(separated both in frequency and in time), with a chirped refer-
ence pulse. If the amount of chirp imposed on the reference is
(a) not enough or (c) too much, no interference is observed, and
the phase difference between the components cannot be deter-
mined. Only if the pulse is chirped by the correct amount (b)
can an interference pattern be observed that permits determina-
tion of 	A � 	B .
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Thus, so long as 	̃A , 	̃B , �̃X , 	S , and �� are known,
	A � 	B can be determined [Fig. 6(b)]. However, for
such a large spectral shear, which is much larger than the
Nyquist limit, only information about the difference 	̃A

� 	̃B is obtained, and it is impossible to retrieve the full
function 	̃(�) within each component. Thus, to obtain
all the information, one requires a series of experiments.
An XSPIDER with small spectral shear is required for
	̃A(�) and 	̃B(�). From this, the value of the large spec-
tral shear, the value of � that is needed can be deter-
mined. Then a second XSPIDER experiment with this
large spectral shear gives 	A � 	B . Note that, to obtain
the absolute value of 	A � 	B , one needs 	S , which re-
quires knowledge of �, �0 , and �, all of which can be de-
termined by calibration.5 Thus in principle a combina-
tion of two experiments (together with the calibration
experiments) could give the complete phase information,
so long as the bandwidth of the reference is wide enough
to give the proper spectral shear.

Again, if the pulse consists of more than two compo-
nents that are not equally spaced, it is in general impos-
sible to find a spectral shear � that will result in interfer-
ence among all components. Then it becomes necessary
to repeat the experiment with a different spectral shear �
for each pair of components in the pulse and to obtain the
phase information in a pairwise manner.

For XSPIDER the requirements on the reference pulse
are the least stringent of the three methods discussed
above. Just as in the case of SHG XFROG, the spectrum
of the reference pulse does not need to overlap the test
pulse as long as it is wide enough that it contains spectral
components separated by 
� � �A � �B ; however, un-

Fig. 6. XSPIDER spectrum for small spectral shear (left) and
for large spectral shear (right), for pulses with 	A � 	B � 0 and
	A � 	B � 0.6�. The components are well separated both in
time and in frequency. For small spectral shear, the two peaks
in the SPIDER spectrum correspond to the SPIDER spectra of
the individual components, and the spectrum is identical for all
	A � 	B . If the large spectral shear is chosen exactly correctly,
the central peak in the spectrogram gives information about 	A
� 	B (inset), although now information about the phase within
each component is not available.

IXSPIDER��� � �E�� � �0�EX��0��2 � �E�� � �0 � ��EX��0 � ���2

� 2 Re�E�� � �0�E*�� � �0 � ��EX��0�EX*��0 � ��exp�i	S�exp��i����. (15)

For a small spectral shear �, following the same reasoning that leads to Eq. (12) yields the nonzero contributions to the
phase-dependent part of IXSPIDER:

2 Re(�ÃA�� � �A � �0�exp�i	̃A�� � �A � �0��exp�i	A�ÃA�� � �A � �0 � ��

� exp��i	̃A�� � �A � 0 � ���exp��i	A� � ÃB�� � �B � �0�exp�i	̃B�� � �B � �0��

� exp�i	B�ÃB�� � �B � �0 � ��exp��i	̃B�� � �B � �0 � ���exp��i	B��

� ÃX��0�exp�i�̃X��0��ÃX��0 � ��exp��i�̃X��0 � ���exp�i	S�exp��i���). (16)

Both terms are independent of 	A and 	B , and again each peak represents the XSPIDER spectrum of the individual
components of the test pulse [Fig. 6(a)].

In general, for larger spectral shear there is no nonzero contribution to the phase-dependent part of Eq. (14). However,
just as in the case of an XFROG with a linearly chirped reference, a nonzero component exists if the spectral shear is
chosen such that upconverted component A of the original pulse overlaps in the frequency domain with upconverted com-
ponent B of the delayed pulse, or vice versa, in the frequency domain [i.e., � � (�A � �B) 	 ��]. If � � (�A � �B)
	 �� is chosen, there will be a part of the SPIDER spectrum centered about �A � �0 at which interference occurs be-
tween the two components of the pulse. In this case the only nonzero contribution to the phase-dependent part of the
XSPIDER spectrum is given by the XSPIDER equivalent of the first term of Eq. (12):

2 Re�ÃA�� � �A � �0�exp�i	̃A�� � �A � �0��exp�i	A�ÃB�� � �B � �0 � ��

� exp��i	̃B�� � �B � �0 � ���exp��i	B�ÃX��0�exp�i�̃X��0��ÃX��0 � ��

� exp��i�̃X��0 � ���exp��i	S�exp��i���

� �ÃA�� � �A � �0�ÃB�� � �B � �0 � ��ÃX��0�ÃX��0 � ���

� cos�	̃A�� � �A � �0� � 	̃B�� � �B � �0 � �� � 	A

� 	B � �̃X��0� � �̃X��0 � �� � 	S � ���. (17)
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like for SHG XFROG, there are no requirements on the
length of the reference pulse as long as the pulse’s phase
is known.

7. SPECTRAL PHASE CONJUGATION SUM-
FREQUENCY GENERATION FROG
As outlined above, a well-characterized reference is
needed both for XFROG and for XSPIDER. In some
cases, one needs a separate experiment to determine the
arrival time of each of the components of the laser pulse,
followed by one or more cross-correlated experiments to
obtain the complete phase information. Therefore it
would be advantageous to devise a self-referencing tech-
nique in which the information can be recovered with only
one experiment.

In theory, if it is possible to create a spectral phase con-
jugate of the test pulse, one possible approach is to cross
reference the test pulse with the spectral phase conjuga-
tion (SPC) of itself in a sum-frequency FROG. The spec-
trogram of such an experiment is

ISF�SPC��, �� � � � E�t �ESPC�t � ��exp�i�t �dt�2

. (18)

The SPC copy ESPC is related to original field E by

ESPC��� � E*���, (19)

and thus

ESPC�t � � ASPC�t �exp��i�t � � A*��t �exp��i�t �.
(20)

If E(t) is defined as in Eq. (2), then

ESPC�t � � AA*��t �exp��i�At �exp��i	A�

� AB*��t � T �exp��i�Bt �exp��i	B�.

(21)

The equivalent of Eq. (5) now becomes

The first and fourth terms in Eq. (22) result in peaks cen-
tered at � � 0, � � 2�A and � � �2T, � � 2�B , re-
spectively. The second and third terms both result in a
peak centered at � � �T, � � �A � �B such that inter-
ference occurs between them, and the interference fringes
can be described by 1 � cos�(�A � �B)� � �� � (�A
� �B)�T � 2(	A � 	B)�.

Thus the phase relation among the components of the
pulse can be retrieved in this experiment. The reason for

this is that a spectral phase conjugated pulse can also be
viewed as the time-reversed copy of the original pulse,
where t � 0 is the reversal axis. In this case the pulse at
delay T with phase 	B will appear in the SPC copy as a
pulse at delay �T with phase �	B . Hence, for a spec-
trogram peak at delay � � T, component AA is upcon-
verted with SPC component AB* and has phase 	A
� 	B , and AB is upconverted with AA* and thus has
phase 	B � 	A . Both resultant peaks are at �A � �B .
The beating between the two components provides the
phase information. This is in contrast to the situation
with the usual SHG FROG for which, if the components
are also well separated in time, at � � 0 the only two
components that contribute to the spectrogram are cen-
tered at different frequencies, 2�A and 2�B , and do not
beat against each other, so no phase difference can be re-
covered.

In general, for N different-colored pulses there will be

N(N � 1)/2 beating peaks on the spectrogram. Figure 7
shows, for example, a three-component case in which each
component is well separated from the other two, both in
the time domain and in the frequency domain. Any two
of the beating peaks will provide enough information to
enable the relative phases among the three pulses to be
determined. Note that this method works only for SFG
FROG, because in the higher-order FROG techniques the
upconverted peaks at � � T do not overlap in the spectral

ISF�SPC��, �� � �exp�i�A��� AA�t �AA*��t � ��exp�i�� � 2�A�t�dt

� exp�i�B��exp�i�	A � 	B��� AA�t �AB*��t � T � ��exp�i�� � �A � �B�t�dt

� exp�i�A��exp� i��	A � 	B�� AB�t � T �AA*��t � ��exp�i�� � �A � �B�t�dt

� exp�i�B��� AB�t � T �AB*��t � T � ��exp�i�� � 2�B�t�dt�2

. (22)

Fig. 7. Spectrogram of SPC SFG FROG for a pulse consisting of
three components, all arriving at different times and with differ-
ent center frequencies. In the spectrogram at the left, the phase
difference among all components is zero; in the spectrogram at
the right the phase difference between the first and the second
components is 0.3� and between the first and third components
is 0.6�. From the shift in the fringes, these phase differences
can be recovered.
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domain. The ultrashort-pulse SPC experiments per-
formed to date30,31 require a transform-limited pulse with
a spectrum spanning the spectrum of the test shaped
pulse to create the SPC copy. If such a pulse is available,
a simple spectral interferometry experiment will suffice
for recovery of the desired information. There are, how-
ever, other approaches to creating SPC pulses; these in-
clude backward-stimulated Brillouin, Raman, or
Rayleigh-wing scattering.32,33 These methods require no
reference pulses and are effectively self-pumped pro-
cesses. SPC pulses of 20-ps duration have been obtained
by use of the stimulated Rayleigh-wing scattering process
in a CS2 cell as the phase-conjugate mirror.34 If these
self-pumped techniques to create spectral phase conju-
gates can be implemented with sufficient efficiency for
complicated ultrashort pulses, a convenient way to char-
acterize multicomponent pulse trains would be provided.

8. CONCLUSIONS
The results of the study reported in this paper are sum-
marized in Table 1. We have demonstrated that, if a la-
ser pulse consists of components that are well separated
in the frequency domain, the self-referenced pulse charac-
terization techniques (the pulse spectrum, the autocorre-
lation, all versions of frequency-resolved optical gating
and the spectral phase interferometry for direct electric-
field reconstruction), are incapable of yielding the overall
phase relation among the spectral components of the
pulse. If a well-characterized reference pulse is avail-
able, spectral interferometry can determine this phase re-
lation. However, requirements on such a pulse are
rather stringent. For cross-correlation FROG these re-
quirements are less stringent, but still a large-bandwidth
pulse is needed that has a linear chirp that is determined
by the arrival time of the components of the pulse. For a
cross-correlation SPIDER, one needs a series of experi-
ments with different spectral shear to obtain the full
characterization. In the most general case, if a pulse
consists of more than two components that are well sepa-
rated both in time and in frequency, both for XFROG and
XSPIDER the phase difference among the components
has to be retrieved in a pairwise manner. We have also

outlined an approach that uses sum-frequency mixing of
the test pulse with its spectral phase-conjugated copy
that is capable, in theory, of recovering the desired phase
relation in a single experiment.

APPENDIX A
The description of the pulses [Eq. (2)] used throughout
this paper was chosen for mathematical convenience. In
this appendix we outline the mathematical relationship of
the pulse as described in Eq. (2) to the more-common de-
scription of a pulse in which the delay between the com-
ponents is created through a path-length difference35:

E�t � � �A�t �exp��i�At �exp�i	A�� � �B�t � T �

� exp��i�B��t � T �exp�i	B��; (A1)

in the frequency domain, this becomes

Ẽ��� � �̃A�� � �A�exp�i	A�� � �̃B�� � �B�

� exp�i�� � �B�T�exp�i	B��, (A2)

where the phase of component B at its arrival time t
� T is compared to the phase of component A at t � 0.
One key point about this definition is that phase 	A� of
component A is referenced to frequency �A , whereas
phase 	B� of component B is referenced to �B . Because
most pulse components do not have a well-defined ana-
lytical form (such as a Gaussian profile), the center fre-
quency of a component may be just an arbitrary assign-
ment. Assigning a different frequency as �B in an
experimentally measured spectrum �̃B in the second term
of Eq. (A2) will result in a different 	B�.

This arbitrariness may result in a meaningless defini-
tion of phase for which the result of an experiment is the
same even though the phase difference as assigned is dif-
ferent. A more meaningful definition of phase that is
simpler to define and avoids the phase ambiguities that
arise from arbitrary reference frequency assignments can
be obtained by comparison of the phase of the electric field
of each component to the phase of a reference wave
exp(i�0t) at the time the component arrives. �0 may be

Table 1. Summary of Capability of Different Pulse Characterization Methods to Determine
the Phase Difference Between Well-Separated Components of an Ultrafast Laser Pulse

Characterization Method

Characterization of a Pulse with Components That Are

Separated in Time
Separated in
Frequency

Separated in Time
And Frequency

Spectral Interferometry Yes Yes Yes
Self-referenced FROG (all variants) Yesa Nob Nob

Self-referenced SPIDER Yes Nob Nob

XFROG Yes Yesc Yesc

XSPIDER Yes Yesc Yesc

SPC–SFG FROG Yes Yes Yes

a Subject to the � or �2�/3 ambiguity for SHG or THG FROG.
b Note that each individual component of the pulse can be fully characterized; only the overall phase difference between components remains undeter-

mined.
c The phase of nonequally spaced components can be measured only in a pairwise manner and requires predetermination of the delay and the frequency

difference among the components for preparation of the proper reference.
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dictated by the experiment and could, for example, corre-
spond to a transition frequency in the system under
study.

The phase differences between the two components and
this reference depend on time and are, respectively,

��At � 	A� � �0t, (A3a)

��B�t � T � � 	B� � �0t. (A3b)

At the arrival time of component A (t � 0) this phase dif-
ference becomes 	A � 	A�, and for component B at t
� T it is 	B � 	B� � �0T. Using these definitions of
the phase in Eq. (A1) yields the expression for the electric
field:

E�t � � �A�t �exp��i�At �exp�i	A� � �B�t � T �

� exp�i��B � �0�T�exp��i�Bt �exp�i	B�.

(A4)

To avoid making the math in this paper more complex
than necessary we have incorporated any additional
phase factors introduced by use of a physically meaning-
ful definition of the phase of the components instead of a
mathematically convenient one, into the complex field of
the pulses; i.e., pulse envelopes AA(t) and AB(t) in Eq. (2)
are defined as

AA�t � � �A�t �, (A5a)

AB�t � T � � �B�t � T �exp��i��B � �0�T�.
(A5b)

This definition of pulses is also suitable for the descrip-
tion of multicomponent pulses created in a pulse
shaper,1,2 for which no additional path-length-dependent
phase in Eq. (A1) is generated.
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