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Ultrashort-laser-pulse retrieval in frequency-resolved optical gating has previously required an iterative
algorithm. Here, however, we show that a computational neural network can directly and rapidly recover
the intensity and phase of a pulse.  1996 Optical Society of America
Recently several techniques have been developed for
measuring the full time-dependent intensity and phase
of ultrashort laser pulses.1 – 3 Although these tech-
niques represent a vast improvement in our ability to
characterize such pulses, they require additional ef-
fort, both in the apparatus and in the extraction of the
pulse intensity and phase from the experimental trace.
Frequency-resolved optical gating3,4 (FROG) is perhaps
the simplest of these methods to implement experi-
mentally, but pulse extraction in FROG requires an it-
erative algorithm, which generally takes a minute or
so to converge. As FROG is also to our knowledge the
only such method to have demonstrated single-shot op-
eration, it is important that pulse extraction in FROG
be performed more rapidly. The purpose of this Letter
is to demonstrate that pulse extraction in FROG can,
in fact, be performed directly and rapidly by a compu-
tational neural network.

In FROG, a nonlinear-optical autocorrelation signal
is frequency resolved by a spectrometer to produce a
FROG trace, which is a spectrogram of the complex
pulse field versus time, Estd. The FROG trace visu-
ally displays the pulse frequency versus time. It also
uniquely determines Estd.3 In its polarization-gate
version, the FROG trace is given by
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where v is the frequency and t is the delay between
the two replicas of the pulse used to make the trace.

Equation (1) can be thought of as a function that
maps the pulse field to its FROG trace. The goal
of the pulse-extraction problem is then to invert this
function to produce the pulse field in terms of its
FROG trace. Unfortunately, no closed-form solution
exists for this inverse mapping, so an iterative phase-
retrieval algorithm is used to find the pulse field for a
given trace.3 This algorithm works well and generally
converges in a minute or so, but, for many applications
more-rapid retrieval is quite important.

A powerful tool for simulating difficult to compute
complex functions is the computational neural network,
or the neural net.5 – 7 It has been shown that neural
0146-9592/96/020143-03$6.00/0
nets can accurately simulate any function.6,7 Success
has been attained in such diverse applications as hand-
writing recognition, high-energy physics,8 and stock-
market prediction. In its simplest form a neural net
(see Fig. 1) consists of several layers of interconnected
nodes, each of which performs a series of multipli-
cations, additions, and nonlinear filtering operations.
The input data comprise the input nodes. At each
node of a second layer of nodes, the hidden layer, the
value is the sum of the products of the input nodes and
a set of weights to be determined. These values are
then input into filter functions, typically a hyperbolic
tangent, to introduce some nonlinearity. This process
is then repeated at a third set of nodes, the output-
layer nodes, which comprise the solution. The net is
trained, that is, the weights are determined, by gen-
erating a set of known input and output training val-
ues and iteratively minimizing the error between the
known output values and the net’s output values.

Once a neural net is trained—generally a time-
consuming process—its use in practice is direct and
essentially instantaneous, typically requiring less than
a second on any computer. Neural nets are also known
for their insensitivity to noise. Finally, they seem
to operate best when the human mind is also adept
at determining the solution. All these characteristics
imply that a neural net should be ideal for pulse
retrieval in FROG.

In this Letter we show that computational neural
networks can directly obtain the intensity and phase
of a pulse from its FROG trace. Our demonstration
involved a limited set of theoretical pulses and was
limited in its generality by the net training time. It is

Fig. 1. Neural network for retrieval of ultrashort laser
pulses from FROG traces.
 1996 Optical Society of America
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Table 1. Ranges of Values for the Four Parameters
Used in the Training of the Neural Neta

Dv b g d

Range 6–18 21.0–11.0 21.0–11.0 20.5–10.5
Training error 5.8% 4.6% 4.6% 4.5%
Validation error 4.2% 4.5% 4.0% 6.1%

aThe second row shows the rms error for each parameter
achieved by the net for the training set of pulses after convergence
was declared; the third row shows the corresponding rms errors
for the validation set of pulses after training.

Fig. 2. Intensity (solid curves) and phase (dashed curves)
of four pulses typical of those used to train the neural net.
The insets in the upper left show the pulses versus fre-
quency; the insets in the upper right show the correspond-
ing FROG traces (frequency versus time).

thus only a proof of this principle and not a complete so-
lution. However, because fast and powerful parallel-
processing hardware is now available, waveform
recovery for arbitrary pulses appears likely. It should
be emphasized that such hardware is needed only for
training the net and is not necessary for using the net.

We used a set of pulses whose complex frequency-
domain field, Esvd, is parameterized by four parame-
ters: the spectral width sDvd and the quadratic sbd,
cubic sgd, and quartic sdd spectral phase coefficients:
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To train the network we used a set of FROG traces
generated by choosing 300 pulses, that is, 300 sets
of the above four parameters. The parameter ranges
are shown in Table 1 and were limited solely by the
requirement that the resulting trace fit within a 128 3
128 grid. Figure 2 shows examples of these pulses.

A FROG trace typically contains 64 3 64 or more
data points—far too much input data for a neural net.
Indeed, there is much redundancy in such a trace,
as it determines at most 64 intensity points and 64
phase points of the corresponding electric field. To
reduce the required number of nodes, we performed
feature extraction on the trace to extract only the
essential information. Our implementation of feature
extraction involved computing the 25 lowest-order two-
dimensional integral moments9 of the FROG traces:
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with p, q ­ 0, 1, 2, 3, 4. Moments can be shown to
determine completely the trace if N2 of them are
used. The lowest-order moments yield basic features
of the trace, such as its area and symmetries. The use
of moments results in significant compression of the
input data. An additional advantage is that a trace of
any size may be used as input.

The structure of our net is straightfor-
ward. Twenty-five input-layer nodes take the values
of the moments, and four output-layer nodes yield
the pulse parameters. The number of hidden-layer
nodes, however, must be determined. Use of too few
hidden-layer nodes can fail to model the full complexity
of the pulse extraction function and yield high errors.
Use of too many hidden-layer nodes, however, can
cause overtraining (accurately yielding all pulses in
the training set but failing to reproduce new pulses
later). We have found that 10 hidden-layer nodes
work best. The symmetric sigmoid function tanh(xdy2
was used as a filter at each hidden- and output-layer
node, and all parameter values were linearly scaled to

Fig. 3. Measured FROG trace.

Fig. 4. Intensity and phase of the trace shown in Fig. 3,
retrieved by the neural net (circles and diamonds) and the
iterative FROG algorithm (solid curves) in the time domain
and in the frequency domain (inset).
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Fig. 5. Intensity and phase of a typical test pulse (solid
and dashed curves) and those reconstructed by the neural
network in the presence of 5% noise (circles and diamonds).

Fig. 6. FROG trace of the pulse shown in Fig. 5. The
actual and retrieved traces are visually identical, so only
one is shown.

the interval f20.4, 0.4g to best utilize the s20.5, 0.5d
range of this function.

We used the Quickprop algorithm10 running on a
Silicon Graphics Indy workstation to train the net.
One pass of the training set across the Quickprop algo-
rithm is called an epoch; our training involved 20,000
epochs. Convergence was declared when the rms
error between the actual and the retrieved pulse
parameters was below 5% and occurred in 6 h.

After training, we tested the network performance
with a validation set of new pulses not in the training
set and chosen randomly within the ranges given in
Table 1. Specif ically, this involved using the trained
network to estimate the parameters of these new pulses
from their FROG trace moments. Invariably, the net
produced very good estimates of all four parameters
of each pulse in the test set (Table 1). These errors
are slightly smaller than the errors obtained for the
training set because the pulses of the validation set are
randomly chosen and therefore emphasize the center
of the four-dimensional parameter space, whereas the
pulses of the training set emphasize its perimeter.

We also tested the network performance on the
experimental FROG trace shown in Fig. 3. A
comparison between the intensity and the phase pre-
dicted by the neural network and the intensity and the
phase retrieved by the iterative algorithm is shown in
Fig. 4. Although the experimental pulse is not of true
Gaussian shape in the frequency domain and therefore
cannot have been accurately described by only one
output parameter Dv, the intensity and the phase of
the pulse are fairly well reproduced by the neural net
in the time domain as well as in the frequency domain.

In an additional investigation running on a Macin-
tosh computer, we tested a net of the same configu-
ration in the presence of multiplicative noise. Using
a commercial MATLAB feed-forward backpropagation
algorithm,5 hyperbolic-tangent filter functions, and a
training set of 144 pulses, we found that adding 5%
multiplicative noise to the FROG traces typically in-
creases the error between the recovered and actual
pulse parameters by a factor of 2. Figure 5 shows a
retrieved pulse for a typical case of this investigation,
using a noise-contaminated trace. In Fig. 6 we show
the FROG trace of the pulse in Fig. 5.

We have used only polarization-gate FROG traces in
this study, but the generality of neural nets will al-
low any type of FROG trace or other pulse measure to
be used. For example, FROG traces made with nonin-
stantaneously responding nonlinear-optical media have
been shown to be retrievable with an iterative algo-
rithm, but the process is extremely slow.11 A neural
network will perform this task quickly.
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