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We simulate multi-shot intensity-and-phase measurements of unstable trains of complex ultrashort pulses using second-

harmonic-generation (SHG) frequency-resolved-optical-gating (FROG) and spectral phase interferometry for direct electric-

field reconstruction (SPIDER).  Both techniques fail to see the pulse structure. But FROG yields the correct average pulse 

duration and suggests the instability by exhibiting significant disagreement between measured and retrieved traces. SPIDER 

retrieves the correct average spectral phase but significantly under-estimates the average pulse duration. In short, SPIDER 

measures only the coherent artifact. An analytical calculation confirms this last fact.  

 

 

When a measurement averages over many differ-
ent events, it faces an impossible task:  providing one 
result when no single result can be correct. In ultra-
fast optics, this issue has been particularly problemat-
ic for multi-shot intensity-autocorrelation measure-
ments of trains of different complex pulses. The re-
sulting measured autocorrelation trace vs. delay (see 
Fig. 1) consists of a narrow spike atop a broad struc-
tureless background.[1] Although early researchers 
often mistook the spike, or coherent artifact, for the 
measure of their pulse length, its width actually only 
yields the much shorter nonrandom component of the 
pulse. The correct pulse length is actually indicated by 
the temporally much broader background, which also 
takes into account the much longer, random, or inco-
herent, pulse component. 

 

Fig. 1. (Color online) Top: Double pulse and its autocorrela-
tion.  Bottom:  A train of variably spaced double pulses and 
their multi-shot autocorrelation. The coherent artifact re-
sults from the short nonrandom coherent component of the 
double pulses (a single pulse), while the broader back-
ground results from the overall average pulse length (the 
combination of both pulses).  This trace is typical of auto-
correlations of nearly all trains of unstable complex pulses. 

Given that the task is inherently impossible, it is 
worth asking what we should expect. The answer is 
that the technique should yield a pulse with some 
characteristics of the typical pulse in the train (e.g., its 
duration) and also give some indication of the stabil-

ity, or randomness, of the pulses in the train. Alt-
hough autocorrelation actually does yield some of this 
information, it yields neither the pulse intensity nor 
its phase for the case of a stable train of identical 
pulses and so is now generally considered obsolete. 

The next question—one whose answer is long 
overdue—is how more modern pulse-measurement 
techniques, which do yield the pulse intensity and 
phase for a stable train of identical pulses, react to 
an unstable train of random pulses. So here we con-
sider this question for frequency-resolved optical gat-
ing (FROG)[2] and spectral-phase interferometry for 
direct electric-field reconstruction (SPIDER)[3], the 
latter of which also allows an analytical result.  

For the simulations, we chose a nonrandom com-
ponent E() with a flat phase and Gaussian intensity 
of temporal FWHM 12t, where t is the temporal 
sampling rate. To E(), we added an equal-energy 
random component Erand() with the same spectrum, 
but with random spectral phase, which we then Fou-
rier-filtered (made somewhat less random and hence 
the resulting pulse shorter) by different amounts to 
yield two trains of variably structured pulses with 
different average complexities and durations.[4]  The 
random trains’ resulting average pulse lengths 
(FWHM) were 26t and 54t. Figure 2 shows typical 
pulses in the two trains. All frequency units are in 
2/(Nt), where N is the SPIDER array size (4096).  

We computed multi-shot traces for second-
harmonic-generation (SHG) FROG and SPIDER. 
FROG involves measuring a self-gated spectrogram 
of the pulse field, while SPIDER measures a spectral 
interferogram of the pulse and a frequency-sheared 
and delayed replica of it. SPIDER requires a fre-
quency shear, , which we chose to be 30/(Nt), and 
a pulse separation, T, which we chose to be 300t.  
For both techniques, our simulated traces averaged 
over the same trains of 5000 different pulses.  Final-
ly, we retrieved pulses from the traces using the gen-
eralized projections SHG FROG algorithm[2] and the 
Takeda algorithm[5] for SPIDER (see Fig. 2). 

Note the narrow autocorrelation-like coherent 
artifacts in the centers of the random-train FROG 
traces. Despite this, FROG retrieves the correct ap-



proximate average pulse durations: 27 and 52t. 
However, the retrieved pulses are simple, lacking the 
structure of the actual pulses in the unstable trains.   

In addition, note the “retrieved” FROG traces, 
which provide a consistency check on the measure-
ment. This is because FROG traces (two-dimensional 
arrays) have many more points than do pulses (pairs 
of one-dimensional arrays), so any systematic error 
in a measured trace preventing the algorithm from 
retrieving the correct pulse is revealed by disagree-
ment between the measured and retrieved traces. 
Indeed, because the multi-shot FROG trace for each 
unstable pulse train does not correspond to any sin-
gle pulse, there is significant disagreement and a 
high rms difference (“G error”) between the two trac-
es, indicating that something is amiss. Of course, it 
is up to the user to determine precisely what. 

For all three pulse trains, we find that SPIDER ac-
curately yields the flat spectral phase of the nonran-
dom component, and hence a pulse 12t long, inde-
pendent of the random component. Thus, SPIDER 
under-estimates the average durations by factors of 
2.2 and 4.5. Instability is indicated by <100% SPIDER 
fringe visibilities V of 98% and 90%, respectively. Re-
duced SPIDER fringe visibility is usually ignored be-
cause it can also arise from benign misalignment ef-
fects. The black dotted SPIDER traces in Fig. 2 are 
fits to the unstable-pulse-train traces, assuming in-
stead a stable flat-phase Gaussian pulse and one such 
benign effect:  unequal energies of the SPIDER-device 
pulse pair.  Note that these fits are indistinguishable 
from the traces for the unstable pulse trains. 

SPIDER allows a simple calculation of its trace in 
the presence of a random component, which confirms 
these results. The multi-shot SPIDER trace is:  
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where the brackets indicate a multi-pulse average. 
Expanding this expression, noting that terms con-
taining only one random field sum to zero in the av-
erage (due, for example, to simple zeroth-order spec-
tral-phase variations), and writing in terms of the 
spectra, S() and Srand(), spectral phases, () and 
rand(), and group delays vs. frequency, () = d/d 
and rand() = drand/d, for the two pulse components: 
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The first line is the sum of the spectra.  The second is 
the usual SPIDER fringe term from which the pulse 
spectral phase is retrieved, but only for the nonran-
dom component of the pulse.  The last is the SPIDER 
fringe term for the random component of the pulse.   

Clearly, variations in the spectral phase of the 
random component, even just the pulse arrival time 

rand(0) (the first-order spectral-phase component), 
will cause the last term to wash out, leaving only the 
spectral background and the SPIDER term for the 
coherent nonrandom component of the pulse. Specifi-
cally, arrival-time variations over a range of 2/ 
clearly wash this term out completely, rendering a 
variable-delay satellite pulse invisible to SPIDER 
(the case of Fig. 1), an effect anticipated in [6].  

As this arrival-time effect is clear from Eq. (2), we 
removed it in our simulations by centering the ran-
dom component on the nonrandom one.  Still, cancel-
lations occur for any randomness in the spectral 
phase and have done so in our simulations, despite 
our additional spectral-phase smoothing to reduce 
the complexity and duration of the random compo-
nents. However, there will be extra background of 

( ) ( )
rand rand

S S    , which will reduce the 
fringe visibility V. Alas, the measurement will say 
little about the random component’s spectral phase. 

To summarize, we find that SPIDER retrieves an 
excellent estimate of the average spectral phase and 
the nonrandom component of the pulse train. But it 
does not see any randomly varying component of the 
pulse. In short, for an unstable pulse train, multi-
shot SPIDER measures only the coherent artifact. 

This should not be surprising: interferometric 
methods, in general, are not sensitive to random 
phase variations, responding only with reduced 
fringe visibility and increased background. We are 
unaware of any SPIDER measurements with fringe 
visibilities greater than 98%, a value that, in our 
simulations, corresponds to a measured pulse length 
too short by more than a factor of 2. Indeed, in su-
percontinuum measurements, much smaller values—
as low as 10%—have been reported[7]. Without 
deeper insight into the underlying physics[8] or addi-
tional independent measurements, it appears impos-
sible to determine whether an imperfect SPIDER 
fringe visibility is due to benign alignment effects 
(and so corresponds to a stable train of short pulses) 
or instability (and so corresponds to an unstable 
train of potentially much longer ones). Thus, unless 
the pulse-to-pulse stability of the temporal intensity 
can otherwise be ensured, it appears that pulse-
length claims from measurements with imperfect 
SPIDER fringe visibility require re-evaluation.  

Some FROG measurements will also require re-
evaluation. While SHG FROG yields the correct 
pulse lengths in our simulations, it, like SPIDER, 
misses the pulse structure and so could also yield 
misleading results in the presence of instability. 
However, FROG provides a strong indicator of insta-
bility: disagreement between the measured and re-
trieved FROG traces.  Unfortunately, some authors 
have attributed such disagreement to possible non-
convergence of the FROG algorithm. In view of our 
results and the FROG algorithm’s demonstrated ro-
bustness for all but extremely complex pulses,[4] 
such discrepancies appear much more likely to be 
due to instability. Fortunately, instability is, in fact, 
more often considered as the cause, having previously 
been encountered experimentally in cross-correlation 

(2) 



FROG (XFROG) measurements of supercontinuum 
pulse trains[9]. In that case, XFROG retrieved a pulse 
with the extreme complexity of a typical pulse in the 
train, and it was the disagreement between the meas-
ured and retrieved traces that indicated a problem 
and inspired single-shot spectral measurements and 
extensive theoretical investigations,[10] confirming 
the highly unstable nature of the continuum.  

In any case, whichever technique is used, meas-
ured—and, if available, retrieved—traces should al-
ways be reported. Only good agreement between meas-
ured and retrieved FROG traces or a 100% SPIDER 
fringe visibility can imply good pulse-train stability.  

The authors acknowledge support from the Na-
tional Science Foundation, Grant #ECCS-1028825 
and the Georgia Research Alliance.  
  

 

Fig. 2. (Color online) Nonrandom- and random-pulse trains of varying complexity, and simulated multi-
shot SPIDER and SHG FROG measurements of them. Top row: nonrandom train of identical Gaussian 
flat-phase pulses. Middle and bottom rows: random-pulse trains of different average complexity and dura-
tion.  Red curves indicate intensity, blue phase, green spectrum, and purple spectral phase. The black 
dotted SPIDER traces are fits assuming flat-phase Gaussian pulses and unequal SPIDER double-pulse 
energies. For all three pulse trains, SPIDER retrieves only the nonrandom pulse component, 12t long, 
and exhibits decreasing fringe visibility (100%, 98%, and 90%, respectively).  FROG also does not see the 
pulse structure but does yield the correct durations.  Measured and retrieved FROG traces also disagree 
for the random trains, and their rms differences (G errors) are large:  0.0083 and 0.014, respectively, for 
the 256×256 traces.  Both techniques retrieve the stable train (top row) perfectly.  

References 

1. E. P. Ippen, and C. V. Shank, Ultrashort Light 
Pulses––Picosecond Techniques and Applications 
(Springer-Verlag, 1977). 

2. R. Trebino, Frequency-Resolved Optical Gating: The 
Measurement of Ultrashort Laser Pulses (Kluwer 

Academic Publishers, 2002). 

3. C. Iaconis, and I. A. Walmsley, Opt. Lett. 23, 792-794 

(1998). 

4. L. Xu, E. Zeek, and R. Trebino, J. Opt. Soc. Am. B 25, 

A70-A80 (2008). 

5. M. Takeda, H. Ina, and S. Kobayashi, J. Opt. Soc. 

Am. 72, 156-160 (1982). 

6. F. Quéré, J. Itatani, G. Yudin, and P. Corkum, Phys. 

Rev. Lett. 90 (2003). 

 

7. M. Yamashita, M. Hirasawa, N. Nakagawa, K. 

Yamamoto, K. Oka, R. Morita, and A. Suguro, J. Opt. 

Soc. Am. B 21, 458-462 (2004). 

8. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, 

S. A. Diddams, K. Weber, and R. S. Windeler, Phys. 

Rev. Lett. 90, 113904 (2003). 

9. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. 

Shreenath, R. Trebino, and R. S. Windeler, Opt. Lett. 

27, 1174-1176 (2002). 

10. X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. 

Dudley, S. Coen, and R. S. Windeler, Opt. Expr. 11, 

2697-2703 (2003).   
 

 

 

 


