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We calculate frequency bandwidths for variable-frequency N-wave-mixing interactions and show that the most important 
parameter for bandwidth determinations is the angle between the two beams (most often one input and one output beam) 
whose frequencies are varying. Geometries in which the two variable-frequency beams copropagate attain the largest 
bandwidths, while counterpropagating variable-frequency beams produce the narrowest bandwidths. When more than two 
beams vary in frequency, additional angles are necessary to characterize the interaction; we calculate bandwidths for the planar 
case and discuss autocorrelators employing second harmonic generation. Finally, we briefly discuss the merits of a few 
broadband geometries. 

1. Introduction 

Variable-frequency N-wave-mixing interactions 
and induced-grating methods form the basis of a rich 
varie'ty of  techniques and devices. Saturation spectro- 
scopy [1,2], polarization spectroscopy [3,4]; coherent 
anti-Stokes Raman spectroscopy [5], and the tunable- 
laser-induced-grating technique [6-8]  are examples 
of  such processes for the case N = 4. Pulselength-mea- 
surement techniques based on second-harmonic-gen- 
eration autocorrelators [9], when applied to pico- 
second tunable dye lasers, are variable-frequency 
three-wave-mixing processes. 

i t i ~ i n g  such interactions, it is usually important 
to attain a large frequency bandwidth, that is, to 
maintain phase-matching despite large variations in 
two or more of  the input or output beam frequencies 
[8]. Researchers have employed a wide variety of  
geometries for N-wave-mixing interactions and in- 
duced-grating experiments, and various authors have 
treated the bandwidth problem in the past, usually 
reporting the discovery of a particularly good (broad- 
band) or bad (narrowband)geometry [10-15] .  (Of 
course, ff  one is interested in optical frequency Filters 
[11], the good-bad dichotomy reverses.) It is well- 
known, for example, that the four-wave-mixing phase 
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conjugate geometry is a particularly narrowband 
geometry [10,16]. 

Although such specific results can be found in the 
literature, a general treatment of  the geometry-depen- 
dent bandwidth issue does not appear to exist. Conse- 
quently, it is the purpose of this paper to present 
such a treatment - which will be seen to be quite 
simple. We also give an intuitive picture for these re. 
suits. We begin with two sections treating the case in 
which only two frequencies vary and then include a 
section on the more complicated situation involving 
three variable frequencies. A discussion of broadband 
wave-mixing geometries completes the analysis. 

2. Interactions producing a variable-frequency output 
beam 

We first consider the two-variable-frequency case 
in which one input frequency and the output frequen- 
cy vary. Our treatment will suffice for all N-wave- 
mixing (and induced-grating) interactions, although it 
was first presented to explain the narrowband nature 
of  the four-wave-mixing phase-conjugate process, in 
which the input and the counterpropagating output 
beam vary in frequency. 
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Fig. 1. (a) I11ust:ation of the f'mite time response, and hence narrow bandwidth, of an interaction involving counterpropagating out- 
put and variable-frequency input beams. The box corresponds to the interaction region. The upper pulse in each box is in part of 
the output pulse, cxeated by the interaction, while the lower pulse in each box is the input pulse; their vertical separation is for the 
purposes of illustration only. (b) illustration of the instantaneous time response and hence, very large bandwidth, of an interaction 
involving cop:ol~gating output and variable-frequency input beams. See comments in the caption of (a). 

Following Siegman et al. [16], suppose that the 
wave-mixing process has an interaction length L, and 
a corresponding transit time T = L/c along the output- 
wave direction (fig. la). Let the fLxed-frequency 
beams be cw waves and the variable-frequency input 
beam be a short pulse (with pulse-length much less 
than 73. The wave-mixing process will create output 
radiation only at points in time and space when all 
input beams coincide. As a result, when the input 
pulse counterpropagates with respect to the about-to- 
be-created output wave, the short pulse will shed a 
continuous "tail" of  induced output wave. The out- 
put wave begins to appear at the instant that the in- 
put pulse first arrives at the entrance to the interac- 
tion region, but radiation created later cannot "catch 
up" with radiation created earlier: the younger radia. 
tion experiences later birth, but in addition, its point 
of  creation is behind the older output radiation. As 
a result, the approximate pulse-shape of the output 
wave will be a square wave of duration 2T or 2L/c. 
The time response of the interaction is thus not in- 
stantaneous. 

The frequency response of the interaction, if one 

considers this as a linear system with input field, is 
then the Fourier transform of the above impulse re- 
sponse. Because the impulse response is broadened by 
an amount on the order of 2T in time, the frequency 
response of the interaction with respect to the vari- 
able-frequency input beam will be f'mite, that is, the 
geometry will have a narrow bandwidth. In other 
words, frequency scans broad compared to l[2T, a 
large phase-mismatch will occur (or equivalently, the 
Bragg angle for the interaction will vary from its 
original value or cease to exist). 

Now consider a geometry in which the output 
beam and variable-frequency input beam copropagate 
(fig. lb). We can calculate the impulse response for 
this interaction in an analogous manner; it is easy to 
see that the impulse response for such a geometry is 
a delta-function. Because the output beam and in- 
put beam copropagate, the output beam will consist 
of an identical short pulse copropagating - both in 
space and in time - with the short input pulse. The 
frequency response of this system will be large, and 
hence, despite a large frequency scan, very little or no 
phase mismatch will result. 
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We have neglected dispersion in this argument. The 
presence of dispersion will of course weaken this 
argument somewhat: if the two pulses have different 
group velocities, they will separate as they propagate, 
and the impulse response will actually have nonzero 
width. However, its width will in general still be much 
less than that of  the counterpropagating-beam case. 

Thus, wave-mixing geometries in which the output 
beam and the variable.frequency input beam coun ter -  

propagate will be narrowband, and, conversely, 
geometries in which these beams copropagate will be 
broadband. In particular, four-wave-mixing phase 
conjugators (in which these beams counterpropagate) 
have narrow bandwidths, as is well.known. What is 
not so well-known, however, is that such phase conju- 
gators have narrow bandwidth because  these beams 
counterpropagate. 

3.  , Interact ions  invo lv ing  t w o  arbitrary 
var iab le - f requency  b e a m s  

The argument in the preceding section demonstrat- 
es that wave-mixing geometries in which one input 
frequency and the output frequency vary will have a 
maximally broad bandwidth if the variable-frequency 
beams copropagate. We now extend this result to N- 
wave-mixing geometries in which a n y  two frequen- 
cies vary. We also work more rigorously, deriving an 
analytical expression for the interaction bandwidth. 

Consider a general N-wave mixing process for 
which 

N 

/aiwi  = O, (1) 
i=1 

where/ai = +I,  and ~ i  is a (positive-valued) input or 
output frequency. We make no distinction between 
input and output beams since they enter equivalently 
into the analysis. I f  the k-vectors of  the interaction 
are labeled k i for i = 1 ... N, the phase-mismatch will 
be 

N 

= ~ /aik~. (2)  
i=1 

Now suppose that initially the process is phasematch- 
ed (z~k = 0), but that two frequencies are varied while 

all beam directions remain fixed. Necessarily, eq. (1) 
will remain satisfied, so that if wi is incremented by 
~w i and 6o/by 6¢~/, we have 

p i ~ i  + ui&o I = o .  ( 3 )  

If I2 is the angle between the two variable-frequency 
beams, the squared magnitude of the phase-mismatch 
due to the variation in frequencies will be 

IAkl 2 = (~¢o2/c2Xn 2 + n? - 2nin / cos a )  (4) 

neglecting dispersion. Setting Izakl 2 equal to (rr/L) 2, 
where L is the interaction length, allows simple solu- 
tion for the actual bandwidth, A¢o i 

A~o i = (21rc/L)[(n i - n / )  2 + 4 n i n  / sin2(I2/2)]-1/2, (5) 

which is plotted in fig. 2. We see that the bandwidth 
will be maximized when fZ = 0, that is, when the 
variable-frequency beams copropagate .  The optimal 
case, A6o i ~ 0% occurs when these beams eopropagate 
and their refractive indices are equal: n i = n/ .  When 
the refractive indices are unequal, the bandwidth will 
decrease for all geometries, but copropagating beams 
will continue to maximize it. In addition, note that 
the bandwidth is independent of/ai and/a/. Finally, 
for degenerate processes involving m i photons from 
the beam of frequency 6o i and k-vector k i ,  the band- 
width will be reduced by a factor ofmi;  all other con- 
dusions remain valid. 
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Fig. 2. The interaction bandwidth for an N-wave-mixing inter- 
action in which two beam frequencies vary versus the angle 
between these two beams (12). The minimum bandwidth, oc- 
cutting when f~ = +~r, is given by: AWmi n = 2trc/[(ni+ n/)L],  
while the maximum bandwidth attainable by a process, oc- 
curring for copropagating variable-frequency beams (~ = 0) 
is given by Awma x = 2nc/(In i -- n/ILL or i f n  i = n/, ACOma x 
= 21rc/(ltatn - ¢0.n:71 LL). When three frequencies vary, co- 
propagation may not yield the maximal bandwidth. 
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Dispersive effects generally play only a very small 
role in the determination of  the b~mdwidth since in. 
dex-mismatch effects due to the changes in frequency 
usually predominate. Actual calculation of the geom- 
etry bandwidth will, however, occasionally require the 
additional dispersive terms, since choosing a large- 
bandwidth geometry often forces cancellation or near- 
cancellation of the refractive-index terms in eq. (5), 
with the dispersive terms then dominating. We can in- 
elude dispersion effects in this analysis by replacing 
n~ + 6o,n ' ,  where n" = an/acol - and 7/= i , j  Co- ,I q ,I . '~4 C~-¢.0~ . "  
propagating beams will continue to maximize tne 

t bandwidth provided that I¢onn n I < n n. 

4. Interactions with three variable-frequency beams 

We can generalize eq. (4) to N-wave-mixing processes 
in which three frequencies (6oi, ¢o/and 6Ol) vary, ob- 
taining 

I~kl ~ = (Scof / c2)[n f  + n f  - 2nin 1 Cos ~2il ] 

+ 2#i~(5~oiSw/ /c2)[n  2 + nin  / cos ~2i/ 

- nin I cos ~ / / -  n/n I cos ( ~ i / -  ~2//)], (6) 

where ~2i/is the angle between k i and k/,  and now, 
~2il is the angle between k i and k l measured in the 
same direction as I2i/. We assume a coplanar arrange- 
ment. Notice that now V/and ~ appear and may help 
to determine the optimal values of ~2i/and n i l  for a 
particular process. The bandwidth for a particular in- 
teraction will depend on the relation between 5 w  i 
and 5w/ ,  and is easily calculated from eq. (6) upon 
appropriate substitution. 

Application of this result to specific wave-mixing 
processes is straightforward, although computational- 
ly messy. For example, consider a second-harmonic- 
generation (SHG) autocorrelator (e.g., for ultrashort- 
pulsewidth measurement of dye-laser pulses), for 
which it is desirable to minimize Iz~kl, and hence the 
amount of realignment necessary, as the input fre- 
quency is varied. Since these devices generally employ 
a non-coUinear-input-beam geometry, we require the 
use of eq. (6). Using 8to i = 56o1 = 8 ~ ! / 2  and ta i = la/ 
= -# l ,  we find 

cos ~2il = (n 2 - n 2 + 4n2)/4ninl ,  (7) 

sin ~2ij = (2nt /n l ) fm I2il, (8) 

for the beam angles that optimize the autocorrelator 
bandwidth. Since n t = (n i + ni)[2 for an initially 
phase-matched interaction, we find that g2ij = ni l  
= 0, and again, copropagating beams optimize the 
bandwidth. In practice, most commercial autocorrela- 
tors [9] employ non.zero values of ~i /and fZil in or- 
der to obtain background-free operation, thus sacri- 
ricing some bandwidth. 

In a higher.order process with one or more fixed- 
frequency beams in addition to the variable.frequen- 
cy beams considered above for the autocorrelator, we 
obtain a bandwidth-optimizing beam geometry with 
noncollinear variable-frequency beams. Additional 
beam(s) allow a more general index-matching equa. 
tion, which we will now take to be: n I = (n i + nl - 8)/2, 
where 5 incorporates all fixed.frequency.beam re- 
fractive indices. It is then easy to show that, for small 
values of 5, the optimal beam angles, fZi/and I2il will 
be 

[(ni/ninl)~] 112 i f 5 />0 ,  

-~ 0 if 5 < 0, (9) 

2[(nl/nin/)8] x/2 if8 1> 0, 

0 if ~ < O, (10) 

working to first order in 5. Thus, collinear propaga- 
tion of the variable.frequency beams is not the uni- 
versal solution to the problem of N-wave-mixing 
bandwidth maximization when more than two beams 
vary in frequency. 

5. Discussion and conclusions 

While it is well known that phase conjugation by 
four-wave mixing is an inherently narrowband pro- 
cess *, the set of broadband four-wave-mixing geome- 
tries is not so well-known. In this section, we discuss 
a few geometries that achieve broad bandwidth and, 
hence, are appropriate for variable-frequency non- 

*For footnote see next page. 
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Fig. 3. (a) The infinite-bandwidth geometry of saturation and 
polarization spectroscopy. The wiggly lines denote variable- 
frequency beams, and the dashed line represents the output 
beam. Co) The large-bandwidth geometry involving near-co- 
propagating of all beams. The wiggly lines denote variable-fre- 
quency beams, and the dashed line represents the output 
beam. (e) Another large-bandwidth geometry. The wiggly 
lines denote variable-frequency beams, and the dashed line 
represents the output beam. In this ease, two beams can be 
made to counterpropagate '[7,8 ], thus simplifying alignment 
considerably. See text for additional advantages and disad- 
vantages of this geometry. (d) The (narrow-bandwidth) geome- 
try of phase conjugation by four-wave mixing. The wiggly 
lines denote variable-frequency beams, and the dashed line 
represents the output beam. Observe that the variable-fre- 
quency beams counterpropagate. 

linear-optical techniques. We also consider the practic- 
al problems of the presence of backgrounds, such as 
polarizer leakage and small-angle scattered light. 

The usual geometry for saturation and polarization 
spectroscopy [1-4]  (fig. 3a) employs two variable- 
frequency beams combined in the same beam emanat- 
ing from the same laser. The output beam remainsat 

* "Forward-going phase conjugation" [ 17 ] employs the vari- 
able-frequency beams in a nearly copropagating geometry, 
and hence, achieves the desired large bandwidth. Such an 
arrangement has its drawbacks, however: mainly a small 
angular bandwidth [17] in contrast to the 2~ angular hand- 
width of the usual "backward-going" phase conjugation. As 
a result, researchers generally shun forward-going phase con- 
jugation, since angular bandwidth is more important in the 
phase-conjugation process than frequency bandwidth. 

a fLxed frequency. Like phase conjugation, these in- 
teractions, when viewed as four-wave-mixing proces. 
ses, are automatically phase-matched. Unlike phase 
conjugation, however, these processes achieve infinite 
bandwidth due to the necessary exact copropagation 
and the same wavelengths and indices of refraction of 
the variable-frequency beams. This conclusion is, of  
course, independent of  dispersion effects. On the nega- 
tive side, however, this geometry always possesses a 
background of at least polarizer leakage. 

The use of  a fixed-frequency output beam in the 
above geometry requires the variation of two input 
frequencies by exactly the same amounts. This is easy 
ff the beams are one and the same, but prohibitively 
difficult otherwise. Consequently, most variable-fre- 
quency wave.mixing experiments control a single in- 
put-beam frequency allowing the output-beam fre- 
quency to vary as a result. A popular geometry of this 
sort is the collinear-beam geometry, which attains 
very long interaction lengths, but possesses a beam 
separation problem when the wavelengths involved 
are approximately equal. Near-copropagation of all 
beams (fig. 3b) is a useful alternative arrangement 
that allows easier beam separation [18]. Still, a 
problem exists in the form of small-angle-scattered- 
light background from all of  the input beams, which 
can be reduced by using larger angles between the 
beams, but at a cost in frequency bandwidth. 

As a partial solution to this trade-off, we have em. 
ployed a broadband four-wave-mixing geometry (fig. 
3c) in which the two variable-frequency beams ap- 
proximately copropagate, but the other two beams 
emanate from other angles. Such a geometry can sig- 
nificantly reduce the scattered light in a given beam 
direction, reducing the number of beams producing 
scattered light to a maximum of one. In earlier experi- 
ments [7] we allowed the other two (fLxed-frequency) 
beams to nearly counterpropagate with the variable- 
frequency beams to maintain a long interaction length 
and ease of  alignment. (Polarization- and wavelength- 
f'fltering helped to reduce the scattered-light back- 
ground from the one beam that remained in a nearly 
copropagating direction with the output beam.) This 
type of four-wave.mixing geometry is useful, and we 
obtained good results with it, but it should be men- 
tioned here that, unlike the other geometries mention- 
ed in this section, this arrangement suffers from its 
own drawbacks. It has severe constraints regarding the 
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allowable wavelengths in the interaction: often, the 
wavelengths involved cause phasematching and a long 
interaction length to be incompatible due to the re- 
quired Bragg angle, and, for some wavelengths, phase. 
matching is impossible. Ref. [8] provides a more com- 
plete analysis of this problem and of  four-wave mixing 
geometries, in general. 

We must conclude that there is no wave-mixing 
geometry that is ideal for all applications requiring 
broad bandwidth. Choice of appropriate geometry 
will always require thoughtful analysis of  the material 
parameters and sources of experimental noise, in par- 
ticular. In any case, an understanding of the significant 
role played by the relevant beam angles of  the geom- 
etry in determining the frequency bandwidth of the 
interaction is certainly helpful. 
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