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ABSTRACT

The past 30 years have seen spectacular progress in the development of techniques for measuring the complete temporal field, and even the
complete spatiotemporal field, of ultrashort laser pulses. The challenge has been to measure a pulse without the use of a shorter event or an
independent known reference pulse, neither of which is typically available. We begin with autocorrelation, the first such “self-referenced”
pulse-measurement method ever proposed, which measures only a rough pulse length, and we describe its limitations. One such limitation
is the presence of a somewhat unintuitive “coherent artifact,” which occurs for complicated pulses and also when averaging over a train of
pulses whose shapes vary from pulse to pulse. We then describe the most important modern techniques capable of measuring the complete
temporal intensity and phase of even complicated ultrashort pulses, as well as their ability (or inability) to measure such unstable pulse
trains. A pulse reliably measured with such a device can then be used as a reference pulse in conjunction with another technique, such as
spectral interferometry or holography, to measure pulses otherwise unmeasurable by a self-referenced technique. Examples include techni-
ques for measuring low-intensity pulse(s) and for measuring the complete spatiotemporal intensity and phase of arbitrary pulse(s).
This Tutorial is limited to well-established, proven methods, but other methods whose description proves instructive will be discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0022552

I. INTRODUCTION

Ultrashort light pulses are the shortest events ever created.
Pulses as short as tens of attoseconds (1078 s) have been generated,
and it is now routine to generate pulses less than 100 fs long. To
use them effectively and to determine how to make them shorter,
less structured, and more stable from pulse to pulse, it is important
to be able to measure them.

that is its electric field as a function of time and space, which can
potentially be a complicated function of all four spatiotemporal
coordinates. We will temporarily ignore the field’s spatial depen-
dence, assuming that the temporal quantities do not depend on the
transverse position, and concentrate on the pulse’s dependence on
time only. We can then write the pulse electric field as

This task seems particularly difficult because, to measure an
event in time, it seems that one would need a shorter event with
which to time it. For example, resolving the action of a bubble
popping requires a strobe light with a flash shorter than the time it
takes for the bubble to pop. Then, to measure the strobe light
intensity vs time requires a detector with an even shorter response
time. So one might reasonably conclude that precisely measuring
the shortest event is impossible.

We will return to this dilemma later, but we must first ask pre-
cisely what it is that we are trying to measure about a pulse, and

El) = % VI®) expli [wot — d(B]} + c.c., (1)

where t is the time in the reference frame of the pulse, w, is a
carrier angular frequency on the order of 10'° rad/s for visible and
near-IR light, and I(t) and ¢(f) are the temporal intensity (often
simply called the “intensity”) and temporal phase (often simply
called the “phase”) of the pulse. We have ignored the proportional-
ity constant and its corresponding units and so use these terms in
their generic mathematical senses because we are only concerned
with pulse shapes and not absolute magnitudes.
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As usual, “c.c.” means complex conjugate and is required to
yield a real pulse field. However, we will use the equivalent analytic
signal representation and ignore the complex conjugate term, yield-
ing a complex pulse field and simplifying the mathematics signifi-
cantly. The c.c. can be re-added anytime. As a result, and because
the center frequency, o, is easy to measure using a spectrometer,
the quantity generally desired in a measurement is the pulse
complex amplitude,

E(t) = VI(t) exp[—ip(1)]. (2

The pulse field in the frequency domain, E(w), is the Fourier
transform of the time domain field and is usually separated into its
spectral intensity S(w) (often simply called the “spectrum”) and
spectral phase ¢(),

E(0) = \/S(@)exp[—ip(0)]. 3)

Note that the temporal phase, ¢, and spectral phase, ¢, are both
called “phi,” but they are different (¢ is a function of time and ¢ is
a function of frequency), so we have used different Greek letter
forms to distinguish them. Also, as is customary in optics, when we
mean the spectral intensity or the spectral phase, we will always use
the adjective “spectral.” Otherwise, the temporal quantities are indi-
cated. As with their temporal analogs, we are only concerned with
their shapes and not their absolute magnitudes, so we ignore any
proportionality constants. See Fig. 1 for a schematic drawing of a
simple, common pulse and these quantities for it.
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FIG. 1. Upper plots: Intensity and phase vs time (upper left) and the spectrum
and spectral phase vs frequency (upper right). The curves plotted here are for a
positively “chirped” pulse, whose red colors precede its blue ones. In the lower
plot, the electric field of a positively chirped white pulse is shown using the
color of its instantaneous frequency (ws(f) = wo — dep/dl) at the particular time.
Reproduced with permission from www.frog.gatech.edu.
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Before we begin discussing the methods for measuring pulses,
we must define what we mean by terms like “short pulse,” “very
short pulse,” and “extremely short pulse.” Simply put, they range
roughly from picoseconds to a few femtoseconds (even attosec-
onds) in length, respectively. Nonetheless, techniques and the
devices based on them will have varying applicability, depending
on the pulse wavelength and other parameters, so we will necessar-
ily be a bit vague about pulse lengths, except in specific cases.
Finally, we will refrain from any attempt to be quantitative about
the meaning of the term “ultrashort,” as it has evolved over the
years from meaning slightly sub-nanosecond to, currently, at most
hundreds of femtoseconds.

Also, a few words on the philosophy of pulse-measurement
devices are in order. First, a pulse-measurement device should be
able to completely measure pulses such as the simple one above but
also much more complicated pulses as well. The reason for this
requirement is that, if a measurement technique can only measure
simple pulses, it will only measure simple pulses. In other words,
when presented with a complicated pulse, a technique that can
only measure simple pulses would likely yield an incorrect simple
pulse, rather than the correct complicated pulse. This incorrect
simple result is unacceptable. Second, the measurement device
should itself be simple, with a minimal number of components and
knobs, so that non-experts in the field of pulse measurement
should be able to use it. Also, tweaking a knob of a measurement
device often changes the resulting measurement—a highly undesir-
able situation—so it is also important that the device does not yield
results that are sensitive to its alignment. The best way to accom-
plish this is for the device to have minimal knobs in the first place.
Third, the technique should have a minimum of “ambiguities”—
incorrect pulses that have the same measured trace as the correct
pulse. Although we will see that ambiguities are unavoidable, some
are “trivial” ambiguities, that is, can easily be calculated and/or
removed and which we can usually live with. Unfortunately, in
many techniques, there are “nontrivial” ambiguities, which can be
neither calculated nor removed and so are unacceptable. When a
device can only measure simple pulses, it is usually because the
device has uncountably many nontrivial ambiguities when con-
fronted with a more complicated pulse. In addition, the device
should also yield some sort of feedback as to whether the measure-
ment is correct or not and whether the assumptions of the mea-
surement are satisfied. Such feedback is not usually available in
optical devices, but we will see that it is important for pulse-
measurement devices to have this capability, and, fortunately, it
turns out to be available, so we now demand it.

Another issue arises because a device usually must average
over many, possibly very differently shaped, pulses, that is, pulses
with different intensities and phases. But, by definition and design,
devices can only provide one result. This is, of course, an unsolv-
able problem; no one answer can be correct, so this problem pro-
vides an excellent litmus test for pulse-measurement devices. In
this case, how well does the device’s “measured pulse” approximate
an actual “typical pulse”? Does the device at least yield the correct
pulse length? And, critically, does the device provide an indication
of the instability?

Note that we absolutely do not desire that the technique
measure the average intensity and phase vs time or frequency.
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Measuring the average spectral phase is particularly unacceptable
because the average spectral phase will yield a pulse significantly
simpler and shorter than is actually present when instability occurs.
This is because a flat or linear spectral phase yields the shortest
possible pulse for a given spectrum.”” So averaging the spectral
phase over many different complicated spectral phases (each corre-
sponding to a different long and complicated pulse) yields a flat
spectral phase, corresponding to a much shorter pulse—clearly a
highly inaccurate result. Getting the pulse length at least approxi-
mately correct is clearly a necessary minimum standard in the pres-
ence of instability.

Worse, there is unfortunately no such thing as a “pulse-shape
stability meter,” so determining the presence or absence of instabil-
ity necessarily also falls to the pulse-measurement technique. As a
result, indicating pulse-shape instability will prove to be one of the
most important tasks of a pulse-measurement device, one that
most methods lack.

Indeed, while many pulse-measurement techniques have been
proposed, very few meet even half of these criteria. This article will
focus mainly on devices and general techniques that have these
important properties. It will also include discussions of some that
do not in part because, for the applications these techniques
address, we cannot do better at this time and so the reader can see
how things can go wrong.

We will also initially spend a good bit of time on older, less
sophisticated methods, not because they are particularly useful
(they lack most of the desired properties) but because they are the
raw materials from which more sophisticated methods that do have
the required properties are built. Also, understanding them and
their limitations helps us to see why the more sophisticated
methods work.

We will also distinguish between “self-referenced” techniques
and those that require a well-characterized reference pulse to make
a measurement. A self-referenced technique is necessary when
measuring a pulse directly from a laser, when no previously mea-
sured time-synchronized reference pulse is available.

As mentioned previously, in principle, it would seem that self-
referenced pulse measurement is impossible, as a shorter event
seems required to measure an event in time, and the only available
event—the pulse itself—is only as short as itself, not shorter.
However, this argument was shown to be a mere myth in 1991,
and it is, in fact, not only possible but actually quite easy for a
pulse to completely measure itself in time.” Indeed, self-referenced
techniques with all the above required properties exist and will be
discussed at length here.

Once a pulse has been measured using only itself (and, of
course, some optical components), that pulse can then be used as a
reference pulse for other, much more difficult pulse-measurement
problems, such as the measurement of a very weak pulse or a
pulse’s complete spatiotemporal intensity and phase.

Our standards for techniques that use a reference pulse for
such difficult tasks will be much lower with regard to pulse-
shape stability measurement. This is mainly because, in general,
no self-referenced methods exist that can make such measure-
ments. Also, once established by a self-referenced technique as
having a stable shape, a pulse train can be relatively certain to
remain stable when simply propagating around an optical table.
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So, the stability measurement requirement can be relaxed in this
case. Of course, if a technique that requires a reference pulse can
also confirm pulse-shape stability in multi-shot measurements,
all the better. Indeed, for measuring very complicated pulses
generated from a stable pulse train using, say, an optical fiber in
which high-order nonlinear-optical processes occur, pulse-shape
stability cannot be counted on, and a technique that indicates
the presence of instability is critical, even though it uses a refer-
ence pulse.

Over the decades, far too many pulse-measurement techni-
ques have been proposed to all be discussed here (this article is a
Tutorial, rather than a review), so only those that have been estab-
lished to meet the above set of standards commonly expected from
such devices will be discussed. Some promising new techniques
have been proposed and demonstrated but have not yet been
shown to meet all the above standards.

We will begin with a discussion of self-referenced techniques
because, without a reference pulse, techniques that require one
are useless.

Il. MEASURING THE SPECTRUM

Of the above four quantities that define a pulse’s electric
field, it has only been generally possible to measure the pulse
spectrum, S(w). Spectrometers perform this task well and are
readily available. The most common spectrometer involves dif-
fracting a collimated beam off a diffraction grating and focusing
the diffracted beam onto a camera. But interferometers also
work (see Fig. 2).

Fourier transform spectrometers operate in the time domain
and measure the transmitted integrated intensity from a Michelson
interferometer vs delay 7, which is often called the light’s field
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FIG. 2. Experimental layout for a Fourier transform spectrometer. Note that this
Michelson-like interferometer design is “dispersion balanced” (has the same
amount of glass, and hence dispersion, in each path), which is required for high-
quality fringes in the presence of broadband light. It also has one-third the propa-
gation length through glass as that of a standard Michelson interferometer, which
is important when a pulse is extremely short and can be distorted by propagation
through glass. Reproduced with permission from www.frog.gatech.edu.
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autocorrelation or its interferogram,

00

E(t) E'(t — 1) dt, (4)

—0o0

) = J

neglecting constant terms. The interferogram’s Fourier transform
(with respect to delay 7) is simply the spectrum, a result known as
the Autocorrelation Theorem (which is a special case of the more
commonly known Wiener-Khinchin theorem describing the con-
volution of a function with its complex conjugate),

|E(@)* = y{r E(t) E'(t — 1) dt}, (5)

where # indicates the Fourier transform with respect to 7, and the
tilde (~) over the field indicates the Fourier transform.

Thus, all spectrometers, whether diffraction grating or Fourier
transform devices, yield the spectrum, and only the spectrum.

A. The spectrum and one-dimensional phase retrieval

It is actually more interesting than it may seem to ask what
information is, in fact, available from the spectrum. Obviously, if
we have only the spectrum, what we lack is precisely the spectral
phase. But what if we know that the pulse intensity vs time is defi-
nitely zero outside a finite range of times? Or at least asymptotes
quickly to zero as t — +o0o0? Knowledge of finite support of the field
in time is a great deal of additional information, which could, in
principle, yield the pulse’s spectral phase when combined with the
known spectrum.

This class of problems is called the one-dimensional phase-
retrieval problem for the obvious reasons that the problem is one
dimensional and we know the spectral magnitude and are trying to
retrieve the spectral phase using this additional information.
It turns out that, even with additional information, the one-
dimensional phase-retrieval problem is nearly always highly
ill-posed’ in the sense that there are many, often infinitely many,
ambiguities—pulses that correspond to a given spectrum and that
satisfy any additional constraints such as those mentioned above.
The one-dimensional phase-retrieval problem is unsolvable in
almost all cases of practical interest, even when additional informa-
tion is included.

Specifically, even with this additional information, there are
obvious, or “trivial,” ambiguities./l Clearly, if the complex amplitude
E(t) has a given spectrum, then adding a phase shift, yielding E(%)
exp(i¢hy), does not change the spectrum. The same is true for a
translation, E(t—tfy), and the same is true for the complex-
conjugated mirror image, E*(-t), which corresponds to a time
reversal. As mentioned earlier, however, most researchers can live
with these trivial ambiguities, hence the name. They are known,
simple, and usually can be removed if additional information is
available. But are there other, more difficult or even impossible-
to-remove, “nontrivial” ambiguities?

Unfortunately, the answer is nearly always yes. In two classic
papers written in 1956 and 1957, Akutowicz showed that knowl-
edge of the spectrum in conjunction with the additional knowledge
that E(f) is of finite duration—often called finite support—is still
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insufficient to uniquely determine E(#).>° Indeed, he showed that
infinitely many pulse fields usually satisfy these constraints.
For example, a Gaussian spectrum can have any amount of
linear chirp, and so can correspond to an intensity vs time that is
also Gaussian, but with any pulse width. Of course, a Gaussian
spectrum can have almost any higher-order phase distortion,
as well.

1ll. THE INTENSITY AUTOCORRELATION

The intensity autocorrelation, A(z)(r), was the first pulse-
measurement technique introduced in the 1960s, and it is based on
using the pulse to measure itself.””'” It involves splitting the pulse
into two, variably delaying one with respect to the other, and spa-
tially overlapping the two pulses, usually in some instantaneously
responding nonlinear-optical medium, such as a second-harmonic-
generation (SHG) crystal (see Fig. 3). An SHG crystal produces
light at twice the frequency of the input light with a field given by
(ignoring constants),

ESIO(t, 1) = E(1) E(t — 7), (6)

where 7 is the delay between the two pulses. This field has an inten-
sity (the squared magnitude of the electric field) proportional to
the product of the intensities of the two input pulses,

If,-?c(t, 7) = I(t) I(t — 7). ?)

Because detectors (even streak cameras) are typically too slow to
time-resolve IsSgG(t, 7), this measurement necessarily yields an

Pulse to be
measured

Beam

splitter
AE([*T) SHG
T crystal
ry - Detector
A‘> ............................
- > Eg (1.7
Variable E(@®)

delay, t

FIG. 3. Experimental layout for an intensity autocorrelator using
second-harmonic-generation (SHG). A pulse is split into two replicas, one is var-
iably delayed with respect to the other, and the two replicas are overlapped in
an SHG crystal. The SHG pulse energy is measured vs delay, yielding the auto-
correlation trace. Other effects, such as two-photon absorption or fluorescence
caused by this process can also yield the autocorrelation, using similar beam
geometries.”""*'“" In this figure and others, a lens is shown focusing the
beam into the crystal, but, for extremely short pulses, when propagation through
glass unacceptably distorts the pulse, a curved mirror can be used in its place.
Also, because intensity autocorrelation is not interferometric, compensation for
dispersion from the beam splitter is not needed. Reproduced with permission
from www.frog.gatech.edu and Trebino, Frequency-Resolved Optical Gating:
The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers,
Boston, 2002). Copyright 2002 Springer.
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integral over time,

AD(7) = J

+o00
I() I(t — 7) dt.

—00

Equation (8) is the definition of the intensity autocorrelation, or,
for short, simply the autocorrelation. This equation is different
from the field autocorrelation [Eq. (4)], which provides only the
information contained in the spectrum.

It is clear that an (intensity) autocorrelation yields some
measure of the pulse length because no second-harmonic intensity
will result if the pulses do not overlap in time; thus, a relative delay

of one pulse length will typically reduce the SHG intensity by

about a factor of two.

Figure 4 shows some simple pulses and their intensity auto-
correlations. Because the intensity autocorrelation only attempts to
provide a measure of the pulse intensity vs time I(f) and makes no

attempt to measure the phase, only intensities are shown.

A. The autocorrelation and one-dimensional

phase retrieval

We can learn more about the autocorrelation by applying the

Autocorrelation Theorem to Eq. (8), yielding

5@

A7 (@) = 1) [,

where I() is the Fourier transform of the intensity vs time [note
that I(w) is not the spectrum, S(»)]. In words, the Fourier trans-
form of the autocorrelation is the mag-squared Fourier transform
of the intensity. In other words, if we know the autocorrelation of
an intensity, we know the magnitude, but not the phase of the

Fourier transform of the quantity we wish to find, I(f).

If this statement sounds familiar, it should. It is another
one-dimensional phase-retrieval problem!

Thus, autocorrelation also suffers from trivial and nontrivial
ambiguities. Figure 5 gives examples of different pulse intensities
that have the same autocorrelation.

The approach taken by users of autocorrelation has been to

assume a simple pulse shape, such as a Gaussian or a hyperbolic
secant squared, and divide the width of their autocorrelation trace
by the theoretical factor calculated for that pulse shape to obtain a
possible pulse length. Although highly simplified models of ultra-
fast lasers yielded such theoretical pulse lengths, this assumption
regarding the pulse shape has little to no theoretical justification in
practice, but no better approach was available until the early 1990s,
and that approach did not involve simple autocorrelation.

B. Autocorrelations of complicated pulses and noisy
pulse trains

Nowhere does the lack of power of the autocorrelation to
reveal structure in a pulse reveal itself more than in the
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measurement of complicated pulses, where, unfortunately, there
happens to be a great deal of structure to be revealed. In fact, for
complicated pulses, it can be shown that, as the intensity increases
in complexity (ie., more structure), the autocorrelation actually
becomes simpler and approaches a simple shape of a narrow spike
on a pedestal, independent of the intensity structure (see Fig. 6)."

The narrow central spike, called the coherence spike or
coherent artifact of approximate width 7, (the coherence time), sits
on top of a broad pedestal or wings of the approximate pulse length
7,. In this case, when only a single complicated pulse (or a train of
identical complicated pulses) is to be measured, we call this spike
the single-pulse coherent artifact.

Even relatively simple pulses can yield autocorrelations com-
prising a coherence spike on a pedestal if the measurement averages
over a noisy train of them, in which their shape varies.'® Consider,
for example, double pulses. Figure 7 shows some double pulses and
their autocorrelations, which have three bumps.

Now, when a laser double pulses, it typically does so quite
randomly. An over-pumped laser, for example, will often emit a
train of double pulses with different, random separations for each
double-pulse in the train. Since a typical ultrafast laser emits pulses
at a very high repetition rate (100 MHz), and most autocorrelators
are multi-shot devices anyway (measuring the SHG energy for only
one delay at a time), the autocorrelator will necessarily average over
the autocorrelations of many such pulses.

This situation will also produce a trace that contains two com-
ponents, a narrow central coherence spike sitting on top of a broad
pedestal, whose height will typically be much less than the value of
1/2 we saw in the last case. Clearly, the coherence spike is a rough
measure of the individual pulses within the double-pulse, and the
pedestal indicates the distribution of double-pulse separations.

Again, while it would be tempting to try to derive the pulse length
from the coherence spike—especially now that the pedestal seems
so weak in comparison—the true pulse length is related not to the
coherence spike but to the pedestal.

Now consider a related problem: averaging over a train of
pulses with randomly varying complicated intensity pulse shapes.
Because each pulse has the same simple autocorrelation, this situa-
tion clearly also yields precisely the same autocorrelation trace as
shown in Fig. 6.

Unfortunately, in the 1960s, when autocorrelation was first
introduced, a few researchers, desiring to claim a shorter (more
“exciting”) pulse, neglected the background and confused the
coherent artifact for the pulse length. The correct interpretation of
such traces was provided by Fisher and Fleck.'” This confusion has
been considered an embarrassing mistake, but it was not at all
obvious at that time that such traces would arise in a technique
that integrated over an always-positive quantity (the intensity) and
yielded an always-positive measured quantity. Coherence is gener-
ally considered to only be a property of waves, which go negative
and yield fringes that can cancel out in phase-sensitive measure-
ments. Indeed, Fisher and Fleck never used the term “coherent.”
But the term has stuck, and it can be justified because complicated
intensities vs time can be thought of as having (always-positive)
oscillatory components.

To see just how careful one must be when using autocorrelation,
consider the case of partial mode-locking, a common problem in
ultrashort-pulse lasers, which can lead to highly unstable and com-
plicated pulse shapes. Here, we consider only slightly complicated
random pulse shapes consisting of a stable 12 fs flat-phase Gaussian
component plus a longer random component. Autocorrelations are
shown in Fig. 8 for a stable 12 fs pulse train and also for two such
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random pulse trains. Note that the autocorrelation for these unstable
pulse trains approaches the same shape as for complicated individual
pulses and variable-separation double pulses (bottom row). Note also
that when the coherence spike is only a factor of two or so shorter
than the base (middle row), it blends in with the base and the two
components cannot be distinguished from each other, yielding an
autocorrelation trace that looks like that of a simple stable pulse train
and yields a pulse length that is considerably shorter than the actual
pulse. Thus, even for only slightly random pulse shapes and long
before autocorrelation trace approaches the classic spike-on-a-
pedestal shape, autocorrelation can lead to significant errors in the
pulse length—by a factor of 2 or more.

Because this case involves multiple pulses, we call it the multi-
pulse coherent artifact. In autocorrelation, the single- and multi-
shot coherent artifacts are essentially indistinguishable, but they
will be distinguishable in techniques that will be discussed later.

So, to summarize, even when the pedestal is weak, do not
make the mistake of misidentifying the coherence spike as an indi-
cation of the pulse length! And also recognize that even an
innocent-looking autocorrelation trace could in fact be the sum of
a base and coherent artifact and yield pulses that are significantly
shorter and simpler than in fact are present.

C. The autocorrelation and spectrum—In combination

If the autocorrelation by itself does not determine the intensity
and the spectrum by itself does not determine the field, why not

-20 0 20 40 60

Delay (fs)

just use both measures in combination and see what the two quan-
tities together yield?

Unfortunately, for ultrashort laser pulses, we do not
have the spectrum and the intensity. We have the spectrum and
the autocorrelation. Of course, as we have seen, the autocorrela-
tion does not uniquely determine the intensity. So, this
process can at best yield only a possible pulse field, not the
pulse field. Indeed, for complicated pulses, because the autocor-
relation contains so little information, this procedure is doomed
to fail.

Even for simple pulses, no analytical work has been performed
on this topic (it is mathematically very difficult). However, Chung
and Weiner” have performed numerical computations and found
numerous nontrivial ambiguities, in addition to the obvious
direction-of-time ambiguity. Figure 9 shows one of the many ambi-
guities they found.

There are several variations on this theme, involving differ-
ent types of autocorrelations, for example. While no one has
taken the time to evaluate them as Chung and Weiner have for
the above scheme, they may work in some simple cases. But it is
doubtful that they perform much better in general, because an
autocorrelation always becomes simpler as the pulse becomes
more complicated, with the result that information is clearly
lost. So, all clearly have many nontrivial ambiguities. As a result,
attempts to save this approach have largely been abandoned,
with a good reason.
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D. Interferometric autocorrelation _ J ‘ E(O? + 2B E(t — 1) + Bt — o) at. (11)

Another version of autocorrelation is called the interferometric
autocorrelation, phase-sensitive autocorrelation, or fringe-resolved
autocorrelation (FRAC). It was introduced by Jean-Claude Diels in
1983°'~*” and quickly became popular. Interferometric autocorrela-
tion involves measuring the second-harmonic energy vs delay from
an SHG crystal placed at the output of a Michelson interferometer
(see Fig. 10). In other words, FRAC involves performing an auto-
correlation measurement using collinear beams, so that the second-
harmonic light created by the interaction of the two different
beams combines coherently with that created by each individual
beam. As a result, interference occurs due to the coherent addition
of the three beams, and interference fringes occur vs delay, as well
as a background out to oo due to the SHG from the individual
beams. This nonzero background contrasts with the zero back-
ground in intensity autocorrelation, which is also often referred to
as the background-free autocorrelation when interferometric auto-
correlation is also being discussed.

The expression for the second-order interferometric autocor-
relation trace is

Note that, if the E(f)* and E(f— 7)* terms were removed from the
above expression, only the cross term, 2E(t)E(t — 7) would remain,
yielding the usual expression for background-free autocorrelation.
These new terms, integrals of E()? and E(t — 1) are due to SHG
of each individual pulse, and their interference, both with each
other and with the cross term, yields the additional information in
the interferometric autocorrelation that is not present in intensity
autocorrelation. Multiplying out all the terms yields four terms: a
constant, the intensity autocorrelation, a term related to the inter-
ferogram, and the interferogram of the second harmonic.
Unfortunately, the mathematics involved is complicated, and inter-
ferometric autocorrelation does not yield the pulse or even its
intensity and must also be curve-fit to a guessed field. Example
interferometric autocorrelation traces are shown in Fig. 11.

Chung and Weiner also shed some light on the issue of how
well the interferometric autocorrelation determines pulses by calcu-
lating interferometric autocorrelation traces for the pairs of pulses
oo ) that yielded ambiguities in the spectrum/autocorrelation approach.
Trrac(t) = J ’ [E(t) + E(t — 0)]* | dt (10) They found that the resulting traces of the pairs of pulses had very

o similar interferometric autocorrelation traces (see Fig. 12).
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FIG. 8. Examples of theoretical random complicated intensities (red) and phases
(blue, but the phase is irrelevant for autocorrelation) and their intensity autocorrela-
tions. Top: Stable simple intensities vs time and their autocorrelation, which correctly
yields the pulse length. Middle: The sum of the stable pulse train of the top row and
a random component and its corresponding intensity autocorrelation. Bottom: The
sum of the stable pulse train of the top row and a highly random, more complicated
component and its corresponding intensity autocorrelation. Note that the structure
has washed out in the middle and bottom autocorrelations due to the averaging
over many double pulses in the train. Also, note that the middle row autocorrelation’s
coherent artifact is long enough that it plus the background look like an autocorrela-
tion of a simple stable pulse and would easily be confused for one. Therefore, this
autocorrelation trace yields a factor of almost two shorter pulses than is actually
present. Reproduced with permission from www.frog.gatech.edu.

In short, interferometric autocorrelation yields essentially the
same information as the autocorrelation and the spectrum, but it
does so in one measurement and so is considerably more conve-
nient and convincing.

Also, Diels and co-workers showed that, once a field has been
fit to an interferometric autocorrelation trace, the direction of time
could be determined by including a second interferometric auto-
correlation measurement—actually a fringe-resolved cross correla-
tion—in which some glass is placed in one of the interferometer
arms. This breaks the symmetry and yields an asymmetrical trace.
Then, assuming that the dispersion of the glass is known, Diels and
co-workers showed that the two traces could be used to completely
determine the pulse field in some cases.”’ Again, however, no study
has ever been published on this algorithm’s performance, and this
approach is rarely used due to its complexity.

E. Third-order autocorrelations

The inadequacies of autocorrelation and its interferometric
cousin were not lost on those who used them. As a result, many
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FIG. 9. Two pulses (top row) with different intensities and phases, which yield
numerically identical autocorrelations (bottom right) and spectra (bottom left).
The spectral phase of both pulses is shown as the dashed curves at bottom
left. Reproduced with permission from Reproduced with permission from
Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort
Laser Pulses (Kluwer Academic Publishers, Boston, 2002). Copyright 2002
Springer.

variations exist, and an important one is the third-order intensity
autocorrelation, or just the third-order autocorrelation.”* >
Third-order autocorrelations have been generated using various
nonlinear-optical effects, such as third-harmonic-generation (THG)
and fluorescence involving three input photons.™’

Slow Detector
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=

Beam-
splitters —_
SHG
Mirrors AA crystal
Focusing
Dispersion- E(t_f)\ mirror
balanced E(1) + E(t-7)
interferometer

Delay

Mirrors

FIG. 10. Experimental layout for interferometric autocorrelation. The correct
setup uses a dispersion-balanced Michelson interferometer, as shown here. A
curved focusing mirror is shown, rather than a lens, to emphasize its application
to extremely short pulses, for which propagation through glass must be
minimized. Reproduced with permission from www.frog.gatech.edu.
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Because I(f) and I(t — 7) appear in the third-order autocorrela-
tion asymmetrically (one is squared and the other is not), a third-
order autocorrelation is symmetrical only if the intensity that
produces it is. The asymmetry is not overwhelming, but it can be
sufficient for determining whether a satellite pulse is a pre-pulse or
a post-pulse.

Third-order autocorrelation also provides at best a rough esti-
mate of the pulse length, and the third-order autocorrelation of a
complicated pulse or a train of random pulses is similar to the
second-order autocorrelation of such a pulse or train: a coherence
spike on top of a broad pedestal.'”

Third-order (and other higher-order) nonlinearities are also
weaker than second-order ones and hence require more pulse
energy. As a result, they do not work well for unamplified pulses
from typical ultrafast laser oscillators, but they are useful for

Delay (fs)

amplified pulses and UV pulses (for which SHG cannot be per-
formed and where third-order nonlinearities are stronger).

Indeed, third-order autocorrelation is critical in ultrahigh-
intensity settings, where a pre-pulse can have enough intensity to
damage the sample before the main pulse arrives.”” For this applica-
tion, one of the pulses is frequency-doubled, and it and the original
pulse overlap in a THG crystal, where the third harmonic is generated
and then detected. As a result, any scattered light occurs only at the
input frequency and the second and fourth harmonics, so no scattered
light at the third harmonic exists to mask the desired signal pulse.
Extremely high dynamic range measurements have been accomplished
in this manner, and this device is the only known method for such
applications. Indeed, in such applications, it is rarely necessary to
know more about such satellite pulses than their arrival time and rela-
tive intensity, so third-order autocorrelation is ideal for this purpose.
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FIG. 12. Left: interferometric autocorrelation traces of the pair of pulses from Fig. 9. The difference between the two interferometric autocorrelation traces is plotted below.
Right: interferometric autocorrelation traces of the same pulses but shortened by a factor of 5. Note that, in both cases, the two interferometric autocorrelation traces are
very similar. Note also that the interferometric autocorrelation traces are even more difficult to distinguish as the pulse lengths decrease. Reproduced with permission from
Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, Boston, 2002). Copyright 2002 Springer.

F. Cross correlation

Occasionally, a shorter event is available to measure a pulse.
In this case, a cross correlation can be performed (see Fig. 13).
The cross correlation, C?(7), is given by

o0

C(zr) = J I(t) L(t — 1) dt, (12)

where I(f) is the unknown intensity and I,(t) is the gate pulse
(shorter event) intensity vs time.

Although cross correlation yields no information about the
phase, the cross correlation precisely yields the intensity when a much
shorter gate pulse is available. This property can easily be seen by sub-
stituting 8(¢) for I(t), which yields I(#) precisely. In fact, it is not even
necessary to know the gate pulse—just that it is much shorter. The
problem is that a much shorter pulse is not usually available.

G. Autocorrelation conclusions

Despite their drawbacks, ambiguities, and generally unknown
information content, the autocorrelation and the spectrum
remained the standard measures of ultrashort pulses for over 20
years, largely for lack of better methods. They allowed rough

SFG
Slow
Unknown pulse =€% crystalrm/ = detector
— o A |
Reference Efr-D) Lens
ulse

P Eqt.r)=EWMNE,(t-7)

'De'ay = I (1) =1(1) I,(t-7)

FIG. 13. A cross-correlator. A shorter reference pulse can gate a longer one in
a sum-frequency generation (SFG) crystal and yield the intensity vs time of the
unknown pulse. Reproduced with permission from www.frog.gatech.edu.

estimates for pulse lengths and time-bandwidth products (TBPs),
and they helped researchers to make unprecedented progress in the
development of sources of ever-shorter light pulses. However, the
drawbacks of autocorrelation and its relatives began to severely
limit their progress in the late 1980s, when the inability to measure
the pulse spectral phase became the limiting factor in the genera-
tion of shorter pulses.

Fortunately,  complete-intensity-and-phase =~ measurement
techniques became available in 1991. As a result, autocorrelation
and its relatives, which are prone to badly under-estimating pulse
lengths, are no longer appropriate measures of pulses and are
rapidly becoming obsolete, except for checking for satellite pulses
in ultrahigh-intensity applications. They have been discussed here
mainly for historical reasons and because they are the building
blocks from which more modern techniques are constructed.

IV. THE TIME-FREQUENCY DOMAIN

With the failure of the combination of the spectrum and auto-
correlation to determine the pulse, the next step in any effort to
develop a self-referenced pulse-measurement technique is obvious:
the spectrum of the autocorrelation.”*™*® It is remarkable that this
simple approach was not considered in detail until 1991.” Tt is likely
because this approach seemed unlikely to succeed. Another likely
reason was that its mathematics appears complicated. It involves a
hybrid domain: the time-frequency domain.'”" Indeed, the key
mathematical ideas were not discovered until the mid-1980s. That
this simple innovation solves the problem so completely and easily
certainly is counterintuitive, as we shall see.”

Measurements in the time-frequency domain involve both
temporal and spectral resolution simultaneously. This intermediate
domain has received much attention in acoustics and applied math-
ematics research but, at the time, had received only scant use in
optics and then only for qualitative measurements. One notable
exception, however, was the idea of spectro-chronography,”” which,
although not widely used, was the principle and work that partially
inspired the work that follows.
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FIG. 14. The musical score is a plot of an acoustic waveform'’s frequency (verti-
cally) vs time (horizontally), with information on the bottom regarding the inten-
sity. Here, the wave increases in frequency with time. It also begins at low
intensity (pianissimo), increases to a high intensity (fortissimo), and then
decreases again. Musicians call this waveform a “scale,” but ultrafast laser
scientists refer to it (roughly) as a “linearly chirped pulse.” Reproduced with
permission from www.frog.gatech.edu.

In reality, everyone is actually quite familiar with the time—fre-
quency domain. A well-known example of it is the musical score,
which is a plot of a sound wave’s short-time spectrum vs time.
Specifically, this visualization involves breaking the sound wave up
into short pieces and plotting each piece’s spectrum (vertically) as
a function of time (horizontally). So, the musical score is a function
of both time and frequency (see Fig. 14).

The mathematically rigorous version of the musical score is
the spectrogram, Zg(a),r),40

2

(o, 7) = Jw E(t) g(t — 7) exp(—iot) dt| , (13)

where g(t — 7) is a variable delay gate function, and the subscript
on X indicates that the spectrogram uses the gate function g(t).
Figure 15 is a graphical depiction of the spectrogram, showing a
linearly chirped Gaussian pulse and a rectangular gate function,
which gates out a piece of the pulse. For the case shown
in Fig. 15, the rectangular function gates a relatively weak,

Light electric field

Time

FIG. 15. Graphical depiction of the spectrogram. A gate function gates out a
piece of the waveform (here a linearly chirped Gaussian pulse), and the spec-
trum of that piece is measured or computed. The gate is then scanned through
the waveform and the process is repeated for all values of the gate position
(i.e., delay). Reproduced with permission from www.frog.gatech.edu.
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FIG. 16. Spectrograms (bottom row) for linearly chirped Gaussian pulses (top
row), all with the same spectrum, but different amounts of chirp and using a
Gaussian gate pulse. The spectrogram, like the musical score, reflects the pulse
instantaneous frequency vs time. It also yields the pulse intensity vs time: notice
that the shortest pulse (center) has the narrowest spectrogram in time. Looking
at the spectrogram sideways yields the frequency domain quantities: the group
delay vs frequency, with its height yields the spectrum. Reproduced with permis-
sion from www.frog.gatech.edu.

high-frequency region in the trailing part of the pulse, etc. The
spectrogram is the set of spectra of all gated chunks of E(¢) as the
delay, 7, is varied.

The spectrogram is a highly intuitive display of a waveform.
Some examples of it are shown in Fig. 16, where it can be seen that
the spectrogram intuitively displays the pulse instantaneous fre-
quency vs time, and the pulse intensity vs time is also evident in
the spectrogram. Importantly, knowledge of the spectrogram of E
(1) is sufficient to essentially completely determine E(t)"*"' (except
for a few trivial ambiguities, such as the absolute phase, which are
typically of little interest in optics problems).

A. Frequency-resolved optical gating (FROG)

As in autocorrelation, it will be necessary to use the pulse to
measure itself, in other words, to gate the pulse with itself, and to
make a spectrogram of the pulse, it is necessary to spectrally resolve
the resulting gated piece of the pulse. The frequency-resolved optical
gating (FROG) technique, introduced in 1991,” measures such an
“autospectrogram” of the pulse and was the first method (and,
arguably, so far the only method) to completely solve the pulse-
measurement problem, having all the required characteristics men-
tioned earlier.””**~*’

In its simplest form, FROG is any autocorrelation-type
measurement in which the autocorrelation signal beam is
spectrally resolved.””**** In other words, instead of measuring
the autocorrelation signal energy vs delay, which yields an
autocorrelation, FROG involves measuring the signal spectrum
vs delay.

As an example, consider the usual SHG autocorrelation geom-
etry. The autocorrelator’s signal field is Eg(t,7) = E(HE(t — 7).
Spectrally resolving Eg(t,7) yields the Fourier transform of the
signal field with respect to time, and detectors, of course, measure
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the squared magnitude, so the SHG FROG signal trace is given by

2

IrroG(@, 7) = J Eqg(t, 7) exp(—iwt) dt| . (14)

Note that the SHG FROG trace is a spectrogram in which the pulse
field gates the pulse itself.

So why can E(t) be obtained from its FROG trace? Letting
the Fourier transform of the signal field with respect to delay be
E;o(£,£2), where Q is the conjugate frequency variable to delay, the
FROG trace is the squared magnitude of the two-dimensional
Fourier transform of E;,(£,£2). Once this quantity is found, it easily
yields the pulse field. Now, because the FROG trace is the squared
magnitude of this function of two variables, this problem is called,
quite reasonably, the two-dimensional phase-retrieval problem.”*

B. FROG and the two-dimensional phase-retrieval
problem

Earlier, we discussed the one-dimensional phase-retrieval
problem and saw that it was ill-posed and so a poor choice for the
mathematics behind a pulse-measurement technique. Quite unin-
tuitively, however, the two-dimensional phase-retrieval problem
has been shown to have an essentially unique solution and is a
solved problem.” This interesting and useful fact follows from the
fact that the Fundamental Theorem of Algebra, which holds for
polynomials of one variable, fails for polynomials of two variables.

The two-dimensional phase-retrieval problem, when finite
support is the case, has only “trivial” ambiguities. In addition, there
is an extremely small probability that another, nontrivial, ambigu-
ous solution may exist, but no such ambiguity has ever been found
in FROG.

In FROG, we actually do not have finite support because no
function can be finite in extent in both time and frequency.
However, FROG has another, much stronger constraint. We know
that, for SHG, Eg;,(t,7) = E(£)E(t — 7). This mathematical relation is
a very strong constraint—the mathematical form that the nonlinear-
optical signal field can have. Hence, we refer to this constraint as the
mathematical-form constraint or nonlinear-optical constraint. Other
versions of FROG, which use other nonlinear-optical processes, have
slightly different but analogous constraints.

This additional information turns out to be sufficient, and
thus, the problem is solved.” Indeed, it is solved in a particularly
robust manner, with many other advantageous features, such as
feedback regarding the validity of the data.”””””' Thus, FROG is
able to measure an event using the event itself and does not require
a shorter one. In fact, using a shorter event is actually undesirable:
substituting a delta-function for the gate pulse in the expression for
the spectrogram [Eq. (13)] yields only the pulse intensity vs time
and not the phase. Except for trivial ambiguities, FROG was
recently rigorously proven to yield unique solutions.”

The mathematical-form constraint removes the direction-of-
time, or inversion, ambiguity in all but one FROG variation (SHG).
Also, some FROG versions have single-parameter ambiguities in
the relative phases of well-separated pulses in time. Finally, no
known technique is able to measure the relative phases of well-
separated modes in frequency.

TUTORIAL scitation.org/journall/jap

1. The FROG algorithm

There are many different FROG pulse-retrieval algorithms, all
based on phase-retrieval approaches. They start with an initial
guess for the field E(f), usually random noise (see Fig. 17); unlike
common minimization schemes, it is not necessary to start with a
good guess (although we will see shortly that a good initial guess is
a much better approach and hence yields a much more reliable
result). A signal field Eg(t,7) is then generated using the relevant
expression for the FROG trace for the beam geometry being used.
This field is then Fourier transformed with respect to ¢ in order to
generate the signal field Eg(w,7) in the frequency domain. The
measured FROG trace Ippoc(w,7) is then used to generate an
improved signal field E';;(,7) by realizing that the squared magni-
tude of Egg(@,7) should be equal to Irrog(@,7), so this step involves
simply replacing the magnitude of E;,(w,7) with the square root of
the measured trace to generate E'y;o(,7). E'io(®,7) is then trans-
formed back into the time domain by applying an inverse Fourier
transform (IFT). In the last step of the cycle, the modified signal
field E'(t,7) is used to generate a new guess for E(f), and the
process is repeated. Ideally, each iteration of the algorithm gener-
ates a better signal field, which eventually approaches the correct
complex electric field.

The algorithm that has made FROG a technique that can
quickly measure virtually every imaginable pulse is the generalized
projections (GP) algorithm,”*’ which, in the absence of noise, gen-
erally converges to the correct solution, even for very complicated
pulses, with an accuracy only limited by the host-computer
system’s numerical precision (or experimental noise). It is also very
versatile: the algorithm can be modified for any nonlinear-optical
interaction, even some slow ones,”” used to measure a pulse.

The essence of the generalized projections technique is graphi-
cally displayed in Fig. 18. Consider it a Venn diagram in which the
entire figure represents the set of all complex functions of two vari-
ables, i.e., potential signal fields, Esig(t,r). The set of signal fields

Start (k£ = 0); Generate an initial guess for
the E-field
Generate

Generate l
pulse field signal field

L ey o+
t-domain:  E,) (7)) ey ECD (1) sy EX) (1,,7,)

Inverse- Fourier
Fourier transform
transform

(k
Es(,g) (@,7))

o-domain: £%'(0,.7) <

APP'YT
measured
trace

e~

FIG. 17. Schematic of a generic FROG algorithm. k indicates the kth iteration.
Reproduced with permission from www.frog.gatech.edu.
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FIG. 18. Generalized projections applied to SHG FROG. The two equations are
considered as constraints on the function, Eg(t,z), which, when found, yield
E(t), the pulse field. Moving to the closest point in one constraint set and then
the other yields convergence to the solution. Although the mathematical-form
constraint for SHG FROG is shown, other FROG geometries can be treated
analogously. Reproduced with permission from www.frog.gatech.edu.

satisfying the data constraint are indicated by the lower elliptical
region, while those satisfying the mathematical-form constraint are
indicated by the upper elliptical region. The signal-pulse field satis-
fying both constraints corresponds to the intersection of the two
elliptical regions and is the solution, uniquely yielding the pulse
field, E(t).

The solution is found by making function projections, which
have simple geometrical analogs. We begin with an initial guess at
an arbitrary point in signal field space. In the first iteration, we
make a projection onto one of the constraint sets, which consists of
moving to the point in that set (in function space) closest to the
initial guess. From this point, we then project onto the other set,
moving to the point in that set closest to the first iteration. This
process is continued until the solution is reached.

When the two constraint sets are convex, i.e., all line segments
connecting two points in each constraint set lie entirely within the
set, convergence is guaranteed.

Unfortunately, the constraint sets in FROG are not convex. In
this case, the projection is not necessarily unique, and the computed
projection is called a generalized projection. The technique is then
called generalized projections (GP), and convergence cannot be
guaranteed. Although it thus is conceivable that the algorithm may
stagnate (that is, not converge), this approach is in practice fairly
robust in FROG problems. In a recent study of the GP algorithm, in
the presence of noise, convergence occurred on the first guess for
simple pulses about 75% of the time. The use of additional guesses
yields convergence most of the time. For very complicated pulses
(TBP ~ 100) in the presence of noise, convergence occurs about half
of the time. Since pulses are rarely that complicated, and no other
self-referenced technique has even been proposed that can measure
such complicated pulses unless a reference pulse is available, this
performance has generally been sufficient in most cases.

When a FROG algorithm fails, one can rerun the algorithm
multiple times, but it would be far preferable to have a pulse-retrieval
algorithm that converges every time. As a result, such an algorithmic
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approach has recently been developed. It is called the Retrieved-
Amplitude N-grid Algorithm (RANA) approach.”* ™™ It uses a much
better initial guess—the actual spectrum, which, it turns out, can
actually be extracted directly from the measured FROG trace.
Obtaining this initial guess is possible because the frequency mar-
ginal (the integral of the trace with respect to delay) can be shown to
be the autoconvolution of the spectrum for SHG FROG, which can
be inverted to yield the spectrum using the simple fact that the
Fourier transform of a finite-width function (e.g., the spectrum) is
continuous and has continuous derivatives. Versions of FROG that
use other optical nonlinearities also directly yield the spectrum but
use slightly different approaches.

The RANA approach also uses smaller, coarser grids for
initial iterations and so operates very quickly in such early
iterations as a result. Finally, because it operates so quickly, it
can use about a dozen initial guesses, all with the correct spec-
trum. The RANA approach can use any FROG algorithm but so
far has been demonstrated using the GP algorithm. It achieves
100% convergence for even extremely complicated pulses with
TBPs of 100 on tests of over 25000 pulses for several FROG
beam geometries and in the presence of significant noise in
the measured traces.”* " It is freely available for download at
www.frog.gatech.edu.

C. FROG beam geometries

Because FROG is a spectrally resolved autocorrelation, every
nonlinear-optical process that can be used to make an autocorrela-
tor can also be used to construct a FROG.” Here, we consider only
the most common FROG geometries. SHG FROG achieves the best
signal-to-noise ratios because it is the strongest (lowest order) non-
linearity and its signal beam is a different color, so scattered light is
easily filtered. As a result, SHG is the most commonly used varia-
tion. Its apparatus and those of other common FROG geometries
are shown in Figs. 19-21.

Figures 22(a) and 22(b) show theoretical FROG traces for the
most common beam geometries, including polarization-gate (PG)
FROG, self-diffraction (SD) FROG, and THG FROG. Pulses
shown are all Gaussian intensity pulses and include the Fourier

Pulse to be
measured
+ Beam
splitter
/ E(t-9) SHG Camera
N> crystal [D Spec-
N 1 trometer
A = 0 ................. N
P—— P E (17
Variable E®)

delay, t

FIG. 19. Experimental apparatus for SHG FROG. The apparatus for
third-harmonic-generation (THG) FROG is similar, but the third harmonic is gen-
erated instead of the second and in a slightly different direction. Reproduced
with permission from www.frog.gatech.edu.
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FIG. 20. Polarization-gate (PG) FROG apparatus. A pulse is split into two: one
(the “gate” pulse) has its polarization rotated by 45° and is variably delayed,
and the other (the “probe” pulse) passes through crossed polarizers. Then, the
two pulses are overlapped in a piece of glass. The 45°-polarized gate pulse
induces birefringence in the glass, which slightly rotates the polarization of the
probe pulse causing it to leak through the polarizers if the pulses overlap in
time. The leakage pulse spectrum is measured with respect to delay, producing
the third-order autocorrelation trace. Reproduced with permission from www.frog.
gatech.edu.

transform-limited (flat-phase) pulse, a pulse with negative chirp,
a pulse with positive chirp, and a pulse with self-phase modula-
tion, which do not change the pulse’s intensity but distorts its
spectrum. Note the symmetrical SHG FROG traces, which yield a
trivial ambiguity in the direction of time. This ambiguity can be
removed by inserting a piece of (dispersive) glass and making a
second measurement; only one direction of time is consistent
with both measurements.

D. Properties of FROG

It can accurately be said that, while intensity autocorrelation
yields a blurry black and white picture of the pulse, FROG yields a
high-resolution full-color image of it. Indeed, the pulse intensity
and phase may be estimated simply by looking at the experimental

Pulse to be
measured

* Beam
splitter

gf E(t-7)
-

w
-
Variable E@)

delay, t

FIG. 21. Self-diffraction FROG. The pulse is split into two, delayed, and recom-
bined in a third-order nonlinear medium, as in the previous figure, but here, the
pulses induce a grating in the glass, which diffracts one of the pulses into a
new direction off to the side, at 2k; — k,. Reproduced with permission from
www.frog.gatech.edu.
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FROG trace, or the iterative RANA approach may be used to reli-
ably retrieve the precise intensity and phase vs time or frequency.

FROG has many useful features. It is very accurate; no signifi-
cant approximations are made regarding the pulse. All that must be
assumed in FROG is a nearly instantaneously responding medium
(SHG crystals work very well in second order, as does glass in third
order), and even that assumption has been shown to be unnecessary,
as the medium response can be included in the pulse-retrieval algo-
rithm.” Similarly, any known systematic error in the measurement
may also be modeled in the algorithm,””" although this modeling is
not generally necessary, except for extremely short pulses (<10 fs) or
for exotic wavelengths. Systematic error can often be removed by
simple preprocessing of the measured trace.’’ Also, FROG
completely determines the pulse with essentially infinite temporal
resolution.”*” Interestingly, this extremely high temporal resolution
can be obtained by using delay increments that are as large as, or
even larger than, the time scale of the structure. The reason for flexi-
bility in temporal delay steps is that the short-time information is
also obtained from large frequency-offset measurements.

Another useful and important feature that is unique to FROG
is the presence of feedback regarding the validity of the measure-
ment data. The FROG trace is a time-frequency plot, that is, an
N x N array of points, which is then used to determine N intensity
points and N phase points, that is, 2N points. There is thus signifi-
cant over-determination of the pulse intensity and phase—there are
many more degrees of freedom in the trace than in the pulse. As a
result, a measured trace that has been contaminated by systematic
error is unlikely to correspond to an actual pulse. Thus, conver-
gence of the FROG algorithm to a pulse whose trace agrees well
with the measured trace virtually assures that the measured trace is
free of systematic error, as well as additional effects that will be dis-
cussed shortly.

In practice, FROG has been shown to work very well in the
IR,””*® visible,”” UV,°"%* and x-ray“’64 regions of the spectrum. It
has been used to measure pulse lengths from tens of attoseconds’*
to several ns.”” It has measured pulses from aJ°>” to J in energy. It
can measure simple near-transform-limited pulses to extremely
complicated pulses with time-bandwidth products in excess of
1000.°® It can use nearly any fast nonlinear-optical process that
might be available. If an autocorrelator or a cross-correlator can be
constructed to measure a given pulse, then making a FROG is
straightforward since measuring the spectrum of it is usually easy.

1. Single-shot FROG

For high-repetition-rate ultrashort-pulse lasers, there often is
not much variation from pulse to pulse. As a result, the delay in an
autocorrelator or FROG may often be scanned in time with confi-
dence that the pulse has not changed during the scan, but
not always.

Indeed, some amplified laser systems have considerably lower
repetition rates, and significant pulse-to-pulse variations are
expected. In this latter case, a single-shot method is required. But
how to accomplish this is not immediately obvious because the
delay must somehow be scanned during a single pulse.

Fortunately, a single-shot autocorrelation or FROG trace can
be obtained by mapping the delay onto the transverse position at
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FIG. 22. (a) Comparison of traces for common ultrashort-pulse distortions for the most common FROG beam geometries. (b) Comparison of traces for common ultrashort-
pulse distortions for the most common FROG beam geometries for additional pulses. Reproduced with permission from Trebino, Frequency-Resolved Optical Gating: The
Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, Boston, 2002). Copyright 2002 Springer.

the nonlinear medium and spatially resolving the autocorrelation
signal by imaging the nonlinear medium onto a camera—an idea
first implemented in 1970.°” This involves crossing the two beams
in the nonlinear-optical crystal at a large angle, so that, on the left,
one pulse precedes the other, and, on the right, the other precedes the
one (see Fig. 23)."’%"" In this manner, the delay ranges from a nega-
tive value on one side of the crystal to a positive value on the other.
Usually, we focus with a cylindrical lens or mirror, so the beams are
line shaped at the crystal, and the range of delays is greater. Spectral
resolution occurs later in the perpendicular direction.

2. Near-single-cycle pulse measurement

The shortest pulse for a given wavelength is only a single cycle
long (~2.7fs for an 800 nm wavelength pulse). Measuring such
incredibly short—and incredibly broadband—pulses can be very
challenging. Propagation through essentially all glass must be
avoided to avoid distortions to the pulse due to dispersion in the
glass over the pulse’s broad spectrum. Also, achieving SHG for all
pulse wavelengths requires a very thin (~10um thick) crystal,

which is challenging. Fortunately, such crystals are now common.
Because the pulse can propagate through any amount of glass after
the crystal, such thin crystals can be placed on substrates of any
thickness for added durability. Finally, the SHG efficiency can vary
significantly across the entire spectrum of the pulse, although the
effect of this variation can easily be corrected for.”’

Geometrical distortions can also potentially plague the mea-
surement, causing the trace to broaden unacceptably. For example,
as shown in Fig. 23, if the delay were to be scanned in the usual
multi-shot manner using a delay stage, a range of delays would be
sampled on any given shot, yielding a somewhat broadened auto-
correlation or FROG trace, and the minimum amount of resulting
pulse lengthening has been shown to be on the order of a fraction
of one cycle.”' The presence of this “transverse geometrical smear-
ing” means that all of the beam geometries that involve crossed
beams and scanning the delay will fail to accurately measure a
near-single-cycle pulse. As a result, such multi-shot geometries
should not be used for near-single-cycle measurements. We will
discuss simple alternative FROG geometries that avoid this
problem shortly, but many authors, unaware of this fact, have
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erroneously concluded that FROG cannot measure such short rate or the presence of pulse train instability (something IFROG
pulses, so the reader should be cautioned not to draw such cannot be used for). The best such approach was pioneered by
conclusions. Akturk and co-workers using the beam geometry shown in Fig. 26,

In addition, “longitudinal” geometrical smearing (in which which has no glass in the beam until the SHG crystal (after which
the delay can vary along the nonlinear-optical signal beam glass does not affect the result).”” A measured pulse using this
direction) can occur in some crossed-beam geometries (except for
SHG). This effect can also broaden traces in the delay direction
(for more information on this effect, see Ref. 2).

One way to avoid all geometrical smearing effects in measure- Spec-
ments of near-single-cycle pulses was pioneered by Steinmeyer and Input | trometer }
co-workers”> and is to use collinear beams, that is, a spectrally < pulse
resolved interferometric autocorrelator, in what is called
Interferometric FROG (IFROG) (see Figs. 24 and 25). The collinear Beam- Y g Camera
beams completely avoid all geometrical distortions. IFROG involves splitters Filter

propagation through only a thin beam splitter and the nonlinear-

optical crystal and so is ideal for near-single-cycle pulses. The inter- SHG
ference fringes present in this case arguably increase its sensitivity to Mirrors M or THG
spectral-phase distortions, which are more likely in such short ]
pulses. Multiple traces can be extracted from a single IFROG trace by Fc?cusmg
Fourier filtering, each of which can be simultaneously used to Dispersion- E(t1—7) mirror
retrieve the pulse using optimization techniques.”””* This additional balanced E() + E(t—7)
redundancy further enhances the robustness of the pulse retrieval. interferometer Delay

Moreover, the interference fringes also contain the exact delay posi-

tions with interferometric precision, allowing the correction of Mirrors

timing jitter, which can be quite relevant for very short pulses.

Alternatively, single-shot FROG geometries work very well for FIG. 24. Schematic for interferometric FROG (IFROG) for measuring
near-single-cycle pulse measurements because the delay vs position near-single-cycle pulses. Note that a curved focusing mirror replaces the usual
is measured and used for the delay range, so no transverse geomet- lens to avoid propagation through glass. Also, the beam splitters are thin, so the
rical smearing can occur. Indeed, single-shot crossed-beam SHG dispersion introduced by their glass is also minimal and also designed to be

identical for each beamlet yielding a “dispersion-balanced” interferometer—
important for yielding correct, symmetrical fringes. Reproduced with permission
from www.frog.gatech.edu.

FROG is also free of longitudinal geometrical smearing and so is
also ideal for performing such measurements, especially if an actual
single-shot measurement is required due to a very low repetition
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geometry is shown in Fig. 27. This approach is less sensitive than
IFROG, however, and it requires a spatially smooth beam.

E. FROG and the coherent artifact

We have seen that, when presented with a complicated pulse,
variable-separation or variable-relative-phase double pulses, or
trains of pulses with varying complicated shapes, autocorrelation
yields an inconvenient and misleading coherent artifact.
Interestingly, FROG and its variations not only measure much
more information but also deal very well with pulse-shape instabil-
ity and the resulting coherent artifact.

First, as the pulse to be measured becomes very complicated,
the FROG trace also becomes very complicated, not simpler, as in
autocorrelation. This feature is good: the pulse information is not
lost in its measurement, and FROG’s performance (with the RANA
approach) has been studied for complicated pulses with TBPs as
large as 100, even in the presence of noise, and the algorithm does
very well.”* In other words, FROG does not suffer from a single-
pulse coherent artifact.

For variable-separation or variable-relative-phase double
pulses, FROG yields traces that clearly indicate the presence of a
double pulse, but frequency fringes in the center lobe that indicate
the pulses’ relative phase (which would be present for stable double
pulses; see Fig. 28) tend to wash out.”” However, because such a
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FIG. 26. Single-shot, single-cycle SHG FROG setup of Akturk et al. The
“bi-mirror” consists of two mirrors next to each other, each at a slightly different
angle, which spit the beam into two beams, each propagating at a slightly differ-
ent angle, yielding crossing beams. Note that a curved focusing mirror replaces
the usual lens to avoid propagation through glass. The pulse propagates
through no glass at all before 5 um-thick BBO crystal (and so is not distorted at
all), essential for such extremely short pulses. This single-shot beam geometry
can be used to measure a single pulse or to average over many pulses.
Reproduced with permission from www.frog.gatech.edu, and Akturk et al.,

J. Opt. Soc. Am. B 25(6), A63 (2008). Copyright 2008 The Optical Society.
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fringeless trace does not correspond to a possible FROG trace, the
FROG algorithm still correctly yields a double pulse. While it often
yields an incorrect relative height for the two pulses, the relative
height mismatch between sub-pulses is easily corrected using addi-
tional information in the trace.””

Finally, when a FROG measurement must average over a train
of randomly shaped complicated pulses, it also yields a trace with a
spike in it that cannot correspond to a trace of a single pulse—a
multi-shot coherent artifact. Fortunately, significant discrepancies
between the measured and retrieved traces result and make it clear
that the pulse train is unstable (see Fig. 29).

While it was well-known that discrepancies between measured
and retrieved FROG traces could indicate pulse-shape instability,*®
the above simulations were not performed until a just few years
ago,”’ ™! when they resolved a mystery that had remained unsolved
for two decades. FROG simulations using multiple initial guesses,
and, more recently, the RANA approach, always showed very reli-
able algorithm convergence;'”’® even in the presence of consider-
able noise, experimental FROG measurements often showed
discrepancies between measured and retrieved traces, even after
trying multiple initial guesses. For many years, such discrepancies
were routinely ascribed to algorithm non-convergence by those
performing the measurements. However, it is now clear that such
discrepancies are due to pulse-shape instability. These discrepancies
can even be quantified and separated from the measured trace, and
can be shown to be directly caused by pulse-to-pulse instability,*”
and such pulse-shape variations can occur not only from pulse to
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FIG. 28. Simulations of SHG FROG measurements of double pulses with random
relative phases and separations. Note that the central lobe’s fringes, which ordinarily
yield the pulse relative phase, have washed out due to the random relative phase.
So, the relative phase is no longer an important parameter. But the retrieved pulse
relative heights are wrong. However, the retrieved sidelobes are too weak, and the
heights from the measured trace can be used to correct this difference. Reproduced
with permission from www.frog.gatech.edu.

pulse but also from place to place in the beam, and so can occur
even in single-shot measurements, although this latter effect
requires more study.

In other words, like autocorrelation, FROG has a multi-pulse
coherent artifact, but FROG’s 2D traces with massive data
redundancy and newly developed extremely reliable pulse-retrieval
algorithm (RANA) allow FROG to provide unambiguous identifi-
cation of pulse-shape instability or its absence. Also, all FROG ver-
sions vyield correct average pulse lengths and TBPs, with
third-order FROG devices also yielding the approximate structure
of a typical pulse.

F. Cross correlation FROG (XFROG)

When a well-characterized reference pulse is available and can
be used to gate the unknown pulse in a FROG setup, the resulting
measurement is referred to as cross correlation FROG, or
XFROG."” The resulting trace is precisely a spectrogram. XFROG is
the most reliable version of FROG and so is essentially always
advised when a well-characterized (not necessarily shorter) refer-
ence pulse is available. In a study of the simple GP XFROG algo-
rithm for pulses with TBPs as large as 100, it retrieved the correct
pulses with a 100% reliability, even in the presence of significant
noise in the trace.”

Indeed, where XFROG truly excels is for measuring extremely
complicated pulses. It is the only known method for measuring
ultrabroadband supercontinuum, whose TBP can be as high as
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FIG. 29. SHG FROG traces and measurements of nonrandom (top row) and
random (middle and bottom rows) trains of pulses. Note that FROG yields major
discrepancies between the measured and retrieved traces when the pulse train
is random. This discrepancy is an excellent indication of pulse-shape instability.
Other versions of FROG also indicate instability in the same manner with a
retrieved pulse closer to a typical pulse in the train. Reproduced with permission
from www.frog.gatech.edu, and Ratner et al, Opt. Lett. 37, 2874 (2012).
Copyright 2012 The Optical Society.

10 000. Shown below in Fig. 30 are XFROG measurements of a
train of supercontinuum pulses averaged over 10'' laser shots.
Notice that the measured and retrieved traces disagree in their fine
structure—a clear indication of pulse-shape instability. This conclu-
sion was confirmed by single-shot spectral measurements.”® These
measurements showed that the supercontinuum was arguably the
most complicated and unstable laser pulse train ever generated (or
measured).

XFROG is also useful for measuring pulses at difficult-to-
detect frequencies, such as in the mid-IR (~2 to ~40um), where
cameras are very expensive and typically still have only ~10* pixels.
Using a near-IR reference pulse, the nonlinear interaction can be
chosen to produce the XROG trace at visible frequencies so that a
standard Si detector can be used. Such measurements have been
done using sum- or difference-frequency generation between the
mid-IR and a near-IR reference pulse in crystals.”>*” Similarly, to
use XFROG to measure mid-IR pulses with bandwidths spanning
several octaves, four-wave mixing up-conversion, a y* process, can
be performed in a gas such as air.”® In these cases, measuring the
spectrum vs delay of the new visible or UV pulse yields an XFROG
trace from which the mid-IR pulse can be retrieved, provided that
the reference near-IR pulse is known.

In addition, by use of the optical-parametric-amplification
nonlinearity, gain can also be achieved along with the usual
temporal gating. Gains of up to 10° are possible, allowing the
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measurement of extremely weak pulses. In this manner, continuum
pulses with energies of aJ were measured.”’

G. Very simple FROG: GRENOUILLE

Recall that device simplicity is also important, and, while
FROG is not complicated, a significantly simpler design is possible
(see Fig. 31).

This simpler device, like its other relatives in the FROG family
of techniques, has a frivolous amphibian name: GRating-
Eliminated No-nonsense Observation of Ultrafast Incident Laser
Light E-fields (GRENOUILLE, which is the French word for
“frog”). It and its operating principles are shown in more detail in
Figs. 32-34.>%

GRENOUILLE first involves replacing the beam splitter, delay
line, and beam combining optics with a single simple element, a
Fresnel biprism®” (see Figs. 31 and 32), which accomplishes all
these tasks by itself. Second, in seemingly blatant violation of the
SHG phase-matching-bandwidth requirement, it also involves
replacing the thin SHG crystal with a thick SHG crystal (see
Figs. 31 and 33), which not only gives considerably more signal
(signal strength scales as the approximate square of the thickness)
but also simultaneously replaces the spectrometer.

How does GRENOUILLE work? Consider the Fresnel biprism
first (see Fig. 32). It is a prism with an apex angle close to 180°,
whose refraction crosses the two resulting beamlets at an angle—
exactly what is required in conventional single-shot autocorrelator
and FROG beam geometries, in which the relative beam delay is
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FIG. 31. SHG FROG device and its simpler version, GRENOUILLE. While Thick
SHG FROG is a fairly simple device, there are a few components of it that can SHG crystal
be replaced with even simpler ones. Reproduced with permission from
www.frog.gatech.edu.

FIG. 33. SHG crystals of various thicknesses illuminated by converging broad-
band light and polar plots (in green through violet) of the generated colors vs
crystal exit angle. Note that the very thin crystal (ordinarily required in pulse-
measurement techniques) generates the second harmonic of all colors in the
forward direction. The very thick crystal, on the other hand, generates a small
range of wavelengths in each direction and, in fact, acts like a dispersive

mapped onto horizontal position at the crystal. However, unlike
conventional single-shot geometries, beams that are split and

crossed by a Fresnel biprism are automatically aligned in space and element used in a spectrometer. Note also that the thick crystal generates con-
time, a significant simplification. Then, as in standard single-shot siderably more SH in the relevant directions. Reproduced with permission from
geometries, the crystal is imaged onto a camera, where the signal is www.frog.gatech.edu.

detected vs position (i.e., delay) in, say, the horizontal direction.
FROG also involves spectrally resolving a pulse that has been
time-gated by itself. GRENOUILLE combines both of these opera-
tions in a single thick SHG crystal.””* As usual, the SHG crystal
performs the self-gating process: the two pulses cross in the crystal Top view
with variable delay. However, in addition, the thick crystal has a
relatively small phase-matching bandwidth, so the phase-matched

Input Pulse #1 I T =10
I i Imaging lens
pise 7=1(x) _ Cylindrical Fresnel Th'cé( 9ing
Here, pulse #1 arrives lens biprism ) Camera
[ earlier than pulse #2 crystal Focusing lens
ulse

________ Here, the pulses Sideyiow
arrive simultaneously
Pulse #2

Here, pulse #1 arrives
later than pulse #2

\ Pulse #2 \—Y—’

F I biori Delay range
FESNELRIPISM FIG. 34. Side and top views of the GRENOUILLE beam geometry. Typically,

the anamorphic lens between the crystal and camera has a focal length of f in

FIG. 32. The Fresnel biprism (a prism with a near-180° apex angle) refracts the vertical direction to map angle and wavelength out of the crystal onto vertical
each half of the pulse by different amounts, crossing them at the crystal. This position at the camera and f/2 in the horizontal direction to image delay at the
crossing maps delay onto transverse position and yields a single-shot autocorre- crystal onto horizontal position at the camera. Note that the beam becomes a
lation, which, when spectrally resolved in the perpendicular direction and vertical line just before the camera, a convenient place for a slit to filter out any
imaged onto a camera, yields a single-shot SHG FROG device. Reproduced extraneous beams, ensuring optimal signal-to-noise ratio. Reproduced with per-
with permission from www.frog.gatech.edu. mission from www.frog.gatech.edu.
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wavelength produced by it varies with angle (see Fig. 38). Thus, the
thick crystal also acts as the dispersive element of a spectrometer.
The ability of a thick nonlinear-optical medium to act as a low-
resolution spectrometer was realized many years ago,”””’ but
pulses then were longer and more narrowband, so its rediscovery
and use in pulse measurement had to wait until pulse bandwidths
increased and pulse lengths significantly decreased.

Two additional cylindrical lenses complete the device (see
Fig. 34). The first cylindrical lens must focus the beam into the
thick crystal tightly enough to yield a range of crystal incidence
(and hence exit) angles large enough to include the entire spectrum
of the pulse. After the crystal, a cylindrical lens then maps the
crystal exit angle onto position at the camera, with wavelength a
near-linear function of (vertical) position.

GRENOUILLE has many appealing characteristics. It has very
few elements and so is inexpensive and compact, with no alignment
required. It naturally operates in single shot. Due to its thick
crystal, it is more sensitive than other pulse-measurement devices.
Furthermore, because GRENOUILLE produces (in real-time, directly
on a camera) traces identical to those of SHG FROG, it yields the
full pulse intensity and phase (except the direction of time and other
trivial ambiguities). In addition, several feedback mechanisms on the
measurement accuracy that are already present in the FROG techni-
que also work with GRENOUILLE, allowing confirmation of—and
confidence in—the measurement. Finally, GRENOUILLE is
extremely simple to set up and align: it involves no beam-splitting,
no beam-recombining, and no scanning of the delay, and so has zero
sensitive alignment degrees of freedom. GRENOUILLE also mea-
sures first-order spatiotemporal distortions.”""*

GRENOUILLE can also measure relatively long (ps) pulses;
indeed, it works even better for such pulses. Use of a pentagonal
SHG crystal combines the Fresnel biprism and crystal into one
component, yielding a device with only three optical elements.
Using such a device, pulses up to 20 ps have been measured.”

Extremely short pulses, on the other hand, prove difficult for
GRENOUILLE. Such pulses lengthen in the biprism and first lens,
but simple theoretical backpropagation of the pulse through these
elements removes this lengthening. Alternately, an all-reflective
GRENOUILLE can be built, using a “Fresnel bi-mirror,””* allowing
the measurement of pulses as short as ~15 fs. However, for shorter,
and hence broader-band, pulses, the crystal group velocity disper-
sion begins to approach the crystal group velocity mismatch, and a
GRENOUILLE cannot be designed for such a measurement.

H. Measuring two pulses simultaneously

Quite frequently, labs require two different-color pulses for an
application, such as an excite-probe chemistry experiment, or a
pulse at one wavelength is generated by a laser, and another pulse
at a new, more useful wavelength is generated from it for the
desired application. One could build two FROGs, one for each
wavelength, but a single device would certainly be preferred, espe-
cially one that can be modified from an already existing
excite-probe beam geometry.

This task can most easily be accomplished using a setup called
Double Blind FROG. This name comes from the mathematical
problem called Blind Deconvolution, in which two unknown
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FIG. 35. Beam geometry for the measurement of two different-color pulses using
Double Blind FROG. Note that each pulse gates the other, yielding two separate
PG FROG traces. Reproduced with permission from wwuw.frog.gatech.edu.

functions are determined from their convolution. For one-
dimensional functions, this deconvolution is obviously not possible,
but, unintuitively, it is often possible for two-dimensional prob-
lems.””® Alas, despite the fact that FROG pulse retrieval is a two-
dimensional problem, it is not possible in FROG. However, if two
traces are generated, it not only becomes possible but also proves to
be very reliable and the corresponding apparatus not too compli-
cated—and easily constructed from an existing excite-probe beam
geometry.

This technique is called Double Blind FROG.””® It works by
one pulse gating the other in a PG XFROG beam geometry, while,
simultaneously, the other gates the one in the same geometry, but
viewed from a 45° angle (see Fig. 35)

The pulse-retrieval algorithm uses the XFROG algorithm with
one pulse treated as the known reference pulse on odd-numbered
iterations and the other treated as the known reference pulse on
even-numbered iterations. This technique and its accompanying
algorithm work extremely well and can measure extremely short
pulses due to the polarization-gating beam geometry’s extremely
large bandwidth. Double Blind FROG can also measure pulses at
two completely different wavelengths.”

I. Other self-referenced methods

FROG was the first and remains the most powerful and
popular pulse-measurement technique, so it has been described in
detail here (and it is the subject of an entire book?). Since FROG’s
introduction, however, many additional methods have emerged.
Many are simply variations on autocorrelation and so are not
useful, except in unique circumstances. Most are interferometric,
and so will be considered in Sec. V, specifically devoted to such
approaches.

Many, however, are not known to be reliable as yet or can
only measure very simple pulses. Others are very complicated and/
or very expensive. Some, for example, require the use of a pulse
shaper, which is a very expensive piece of equipment, and some-
thing whose performance requires an additional, separate pulse-
measurement device to check.

Many others, as we will see shortly, measure only the coherent
artifact. While lasers are more stable now than in the 1960s,
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many are not stable, and simple misalignment, a rickety plat-
form, or an overly powerful or unstable pump laser can turn an
otherwise stable laser into an unstable one. Also, lasers at the
edge of technology, such as those emitting near-single-cycle
pulses, are often unstable and so absolutely require a check on
their output pulse stability.

In addition, mode-locking instabilities have often been
observed in, for example, dye lasers due to their short upper-state
lifetimes. This problem was considered to be solved with the
advent of much more stable solid-state lasers. However, semicon-
ductor lasers or passive laser combs lack the stabilizing action of a
long upper-state lifetime and have, therefore, often shown indica-
tions of a coherent artifact, and their autocorrelation measurements
have often been misinterpreted.

A technique that only measures the coherent artifact cannot
distinguish a stable train of short simple pulses from an unstable
train of long complicated pulses. Not being able to distinguish the
typically most desirable situation from the least desirable one is the
worst-case scenario for any type of measurement device. Such
methods are unacceptable and so should not even be considered.
They will not be treated here, except to show how the coherent arti-
fact measurement can (and often does) occur in pulse measure-
ment and to illustrate this point.

Before we continue, it is important to remind the reader that
simple and obvious standards for pulse-measurement techniques
have been established.”” In our earlier discussion of them, we men-
tioned that the method should indicate pulse-shape instability if it
is present, but we can now be more specific: if there is even a
remote possibility that pulse-shape instability might be present, it is
extremely important that the pulse-measurement method not yield
only the coherent artifact. Unfortunately, interferometric methods
are likely to measure only the coherent artifact.

V. SPECTRAL INTERFEROMETRY

FROG and its variations work well for a wide variety of
pulses, but they fail for very weak pulses due to the required
nonlinear-optical process if a more powerful reference pulse is not
available. Also, for very complicated pulses, FROG works, but the
required data collection and pulse retrieval can be very slow. In
these cases, methods using a FROG-measured reference pulse are
useful, and XFROG is often used in this case. However, if a refer-
ence pulse train is measured to be stable, then a method that mea-
sures only the coherent artifact (as is the case for most
interferometric methods) can be acceptable, as features such as
fringe visibility can then confirm the unknown pulse’s stability.

One such technique is spectral interferometry (SI)'”’ (see
Fig. 36), first introduced by Froehly and co-workers.'”’ SI is, in
principle, very simple, and it can measure a light pulse’s intensity
and phase for very complicated (i.e., large TBP) pulses, reaching
TBP values of ~65 000, or very weak pulses with energies of zepto-
joules or less.

SI requires a completely characterized reference pulse (in
intensity and phase) whose spectrum contains that of the unknown
pulse. Fortunately, weak and/or complicated pulses usually do not
exist “in a vacuum.” The processes that create them, whether a
pulse shaper or propagation through a plasma or biological tissue,
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FIG. 36. Basic S| experimental setup. The reference and unknown beams are
recombined collinearly and then sent into a spectrometer. Because the pulses
expand in time inside the spectrometer, they interfere even in the presence of a
delay, yielding spectral fringes. Reproduced with permission from www.frog.
gatech.edu.

generally begin with a much stronger, simpler pulse with a spec-
trum that contains, and often is the same as or at least contains,
that of the unknown pulse as the input. Thus, a more intense,
simpler reference pulse, which can be measured using FROG, is
often available to use to measure the more difficult pulse. The com-
bination of FROG and SI is often called TADPOLE or Temporal
Analysis by Dispersing a Pair Of Light E-fields.'”'

SI involves simply measuring the spectrum of the sum of the
unknown pulse and a known pulse. The resulting spectral interfero-
gram is given by

Ssi(w) = Sref(w) + Sunk(@)

+ 2/ Sref (@) / Sunk(@)€08[ @, (@) — @pp(@) + 0T, (15)

where S,.A®) and S,,i(w) are the reference and unknown pulse
spectra, @,A®) and @,,i(@) are their spectral phases, and T is the
delay between the two pulses.

The spectral phase is encoded in the phase of the interference
fringes and is easily retrieved.

The most common method for retrieving a pulse from its SI
trace takes advantage of the delay between the reference and
unknown beams. The spectral interferogram is Fourier transformed
with respect to frequency to a “pseudo-time” domain (“pseudo”
because it is only being used for data reduction, and the resulting
quantity has no simple physical meaning). The delay is chosen so
that, in the Fourier domain, the different components of the inter-
ferogram are well separated along the pseudo-time axis. As a result,
the first two terms in Eq. (15), the “DC” terms, are centered at
t=0. The cosine separates into its positive and negative compo-
nents, called the “AC” terms, each centered at + T. Only one of the
two “AC” terms is retained and is then translated to t=0 and
inverse Fourier transformed. What results is the product of the
reference and unknown fields,

\/ Sref @)/ Sunk(@)expli[ @y (@) — @rop (@)1} (16)

(or the complex conjugate) which, after dividing out by the refer-
ence field (or its complex conjugate), yields the unknown field
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spectrum and spectral phase. When using this retrieval algorithm,
the approach is often called Fourier transform spectral interferome-
try (FTSI) (Fig. 37).'""

A. Advantages and disadvantages of spectral
interferometry

SI uses an inherently single-shot geometry, and its retrieval
algorithm is fast and direct. Also, SI is a “homodyne” method
because what is measured is the squared magnitude of the sum of
the reference and unknown (spectral) fields. This means that,
because the key measured quantity is the cross term of this squared
magnitude, which is a product of the two fields, a strong reference
field can effectively amplify a weak unknown field. Choosing the
reference pulse to be M times more intense than the unknown
pulse produces peak-to-peak spectral fringes that are 41/M times as
intense as the spectrum of the unknown pulse; for M =100, the
fringes are 40 times more powerful than the unknown pulse spec-
tral intensity in the absence of the reference pulse. As a result, for a
100 MHz rep-rate pulse train, SI was able to measure a pulse with
only 427] of energy or 1/5 of a photon per laser pulse,'”" and
pulses weaker by a factor of 1000 should be measurable using it,
provided that the pulse train is stable. See Fig. 38 for these results.
Notice that the spectral fringe contrast is easily visible even though
the unknown pulse is much weaker than the reference pulse.

50000 T

0 “Time”

It should always be remembered that, in the presence of pulse-
shape fluctuations, SI measures only the coherent artifact and so
does not see fluctuations in a pulse train, whose fringes wash out.
This is fine when there is perfect stability, as in the case above,
when the coherent artifact is equal to the pulse itself (in which case
one does not refer to the retrieved pulse as an “artifact”). As a
result, it is very important to measure the reference pulse using a
technique that establishes its stability, such as FROG. Then, a 100%
SI fringe visibility confirms the stability of the unknown pulse as
well (except for unequal beam intensities and/or misalignments
that reduce the fringe visibility, and which can be accounted for).
This statement can be said for all variations of SI and also for
holographic pulse-measurement techniques to be discussed later.
Fortunately, this requirement is easily accomplished when the refer-
ence pulse is strong and hence measurable with, for example, FROG.

Also, in this form, SI requires perfectly collinear beams, with
perfectly matched spatial modes. This makes SI very difficult to
align, despite its seemingly trivial-looking apparatus. To see this,
consider that crossing two pulses with large beams at some noncrit-
ical angle has only one sensitive alignment degree of freedom
(delay), whereas making them collinear has five (delay, two angles,
and two spatial coordinates). Fortunately, there are simpler alterna-
tives, and many involve crossed beams instead of collinear ones.

But first, we will consider a recent implementation of SI
using optical fibers, known as STARFISH (Spatio-Temporal

- " j j j 12 T T T y y 8 FIG. 38. Left: Spectral interferogram
2 —TADPOLE FROG Spec. - - -FROG Phase f
< L ] or a 42 zJ pulse, and the spectrum of
g 40000 Unknown = TAD-pec: TAD. Phase 16 - the pulse (here labeled “Unknown”).
‘é’ 30000 } 4 g 08} A la '§ Right: Retrieved spectrum and spectral
2 s \ b phase. The fringe visibility here is not
T 20000 1 £ . . 12 & 100% due to unequal intensities of the
& 10000 L § z reference and unknown pulses, not
i i 10 instability. Reproduced with permission
0 5 N - = 5 0 i . X 2 from Fittinghoff et al., Opt. Lett. 21,
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Optical Society.
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FIG. 39. STARFISH: This very convenient experimental setup for S| uses a
fiber spectrometer, a fiber coupler and two fibers to introduce the reference and
unknown pulses. Reproduced with permission from www.frog.gatech.edu.

Amplitude-and-phase Reconstruction by Fourier transform of
Interference Spectra of High-complexity-beams), that solves
most of these problems, provided that the beam is large and only
a small fraction of it needs be considered'’* (see Fig. 39). The
reference and unknown pulses are coupled into two, equal-
length fibers whose outputs are combined with a fiber coupler
and sent into the spectrometer. This setup ensures collinear
beams and matched modes. If the fibers have equal lengths, both
the reference and unknown pulses see identical dispersions,
which cancel out and so can be ignored. In practice, it is not
possible to make the lengths exactly the same, but the small
residual difference can be measured and then subtracted from all
measurements. The fibers are extremely helpful, since the beams
can now move around without affecting the alignment of the
spectral interferometer.

The main drawback of STARFISH is the required spectral
fringes and the resulting loss of spectral resolution due to the need
for spectral filtering in the pulse-retrieval algorithm.'”’ Typically, at
best, only about 1/5 of the spectral resolution is retained. This
drawback severely limits STARFISH’s (and SIs) ability to measure
even moderately complicated pulses.

B. Crossed-beam spectral interferometry

To avoid this loss of spectral resolution, a variation of SI
instead makes spectrally resolved spatial interference fringes.
This approach involves a very convenient experimental
setup and also solves SI’s alignment problems. In addition, it
yields spatial resolution in one dimension.'”*™'"* It is shown
in Fig. 40.

The SI spectrometer’s usual linear detector is replaced with a
camera. Now the idea is to make the interference fringes along the
spatial dimension instead by setting the reference-unknown pulse
relative delay to ~0 and crossing the two beams at a small angle.
The crossing angle plays the same role as the delay in usual SIL
After Fourier transforming, now along the spatial dimension, the
“AC” and “DC” terms separate due to their different spatial
frequencies. This step leaves the data along the frequency axis
unchanged so that the unknown pulse is reconstructed with the
spectrometer’s full spectral resolution.

TUTORIAL

scitation.org/journall/jap

— A

Camera

Cylindrical
lens

X

Unknown
pulse

i i

Grating
Reference pulse

FIG. 40. Crossed-beam spatial interferometry. The reference and unknown
beams cross at the camera of a spectrometer, or equivalently at the slit of an
imaging spectrometer. Mirrors in one of the two beam paths are tilted to make
the beams cross. The spatial interference of the two beams at each frequency
within the pulse is recorded. From this measurement, E,(w) can be recon-
structed with the full resolution of the spectrometer. It also yields spatial resolu-
tion in one dimension (across the fringes). Reproduced with permission from
www.frog.gatech.edu.

The equation for a spectrally resolved spatial interferogram is
shown below,

S(w, x) = Sref(w) + Sunk(®@)

+ 24/ Sref (@) / Sunk (@) 08 [ @1k (@) — Prep (@) + 2k 5in6].

(17)

In Eq. (17), @ is the crossing half angle, k is the wavenumber, and x
is the vertical dimension in which the beams are crossing (perpen-
dicular to the propagation direction). Figure 41 shows such inter-
ferograms for two different pulse shapes, assuming an identical
spectrum for the reference and unknown pulses and flat spectral
phase for the reference. What is especially convenient about these
interferograms is that the curvature of the interference fringes is
proportional to the spectral phase difference. So, qualitatively, the
spectral phase of the pulse can be immediately seen by the eye.
This feature has been used for real-time adjustments of a pulse
compressor. Curve fitting has been applied to very accurately
extract the unknown pulse from the spatially resolved spectral
interferogram, '’ and it has the advantage that, if some spatial
information is present, there is no resolution loss along this
dimension.

Figure 42 shows the pulse-retrieval algorithm for crossed-
beam spectral interferometry.
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FIG. 41. Simulations of crossed-beam
spatial interferograms for two different
unknown pulse shapes, assuming a
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C. Practical measurement of weak and complicated
pulses: SEA TADPOLE

Spatially Encoded Arrangement for Temporally Dispersing a
Pair of Light E-fields (SEA TADPOLE)'*>'"’ is another experimen-
tally simple version of crossed-beam spectral interferometry that
uses optical fibers to ensure perfect mode-matching and a lens to
ensure collimated beams (see Fig. 43) entering a simple imaging
spectrometer. Like other crossed-beam variations on SI, it avoids
alignment problems and is able to use the entire spectrometer
resolution.

In SEA TADPOLE, the reference and unknown beams are
coupled into approximately equal-length fibers. At their output
ends, the fibers are mounted with a small gap between them, and
the diverging beams emerging from them are collimated with a
single spherical lens. Because of the fibers’ displacement from the
optic axis, the beams are collimated, but one propagates downward,
and the other upward. Eventually, the beams cross, resulting in

w(radffs)

spatial interference fringes. A camera is placed at the beam’s cross-
ing point. In the other dimension, a diffraction grating and a cylin-
drical lens map each wavelength to a different camera position
(that is, act as a spectrometer). The Fourier filtering algorithm
described earlier is used to reconstruct the pulse, but now the filter-
ing occurs in the spatial domain, rather than the spectral domain.

SEA TADPOLE is very easy to use in practice, collinear beams
are unnecessary, and a low-resolution home-made spectrometer is
used. It has measured complicated pulses with TBPs as high as
100,'”” with the only limitation being the spectrometer. An example
of a SEA TADPOLE measurement of the spectrum and phase added
by a pulse shaper is shown in Fig. 44. Note the intuitive shape of the
fringes, mirroring the actual spectral phase of the pulse.

The bottom left plot of the spectra reveals a very interesting
feature of such measurements. The spectrum in green was that
obtained from the SEA TADPOLE measurement. The spectrum
in magenta was obtained by simply blocking the reference beam
and measuring the unknown pulse spectrum using the same
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w

FIG. 42. Fourier filtering along the
spatial axis. Take a 1D Fourier trans-
form to k, where the data separate into
three bands. Use either of the side-
bands, which contain the phase infor-
mation, and inverse Fourier transform
to obtain Edw)Eym(w)* without any
loss of spectral resolution. Reproduced
with permission from Bowlan et al.,
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FIG. 43. SEA TADPOLE experimental setup. Reproduced with permission from
www.frog.gatech.edu.
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spectrometer, but now acting as a standard spectrometer, rather
than a spectral interferometer. Note that, despite the use of the
same spectrometer, the SEA TADPOLE-measured spectrum has
considerably higher spectral resolution.

Such high spectral resolution is due to the fact that SEA
TADPOLE measures the spectral field, not the spectral intensity, and
convolutions of the spectrometer point-spread function with poten-
tially negative functions, like the spectral field, do not broaden as
much as positive-definite functions, like the spectral intensity.'"

1. Measuring very complicated pulses in time: MUD
TADPOLE

At each pixel on the detector of an SI spectrometer, the pulses
stretch in time and have the duration of the inverse of the spec-
trometer spectral resolution. So, they temporally overlap for this
amount of time. Because two pulses can only interfere when tem-
porally overlapping, the task of measuring longer, more compli-
cated pulses using any version of SI, including SEA TADPOLE,
would, in principle, require a higher-resolution spectrometer, in
order to further broaden the reference pulse. If the unknown pulse
is longer than the inverse of the spectrometer resolution, then a
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single reference pulse will not be able to interfere with all of it. The
key to overcoming this limitation, that is, to beating the spectrome-
ter’s resolution, is to use multiple, delayed reference pulses. The use
of a reference pulse with multiple delays is the key idea of MUlItiple
Delay TADPOLE (MUD TADPOLE)."''~'" This idea is illustrated
in Fig. 45.

This idea is straightforward to implement in a multi-shot
scanning setup'''™'"” and was accomplished using SEA TADPOLE
for the individual measurements. Then, in the time domain, these
temporal pieces are concatenated to yield the entire unknown
pulse, which will now be resolved with a spectral resolution given
by the inverse of the scanning range. Figure 46 illustrates this
process.

MUD TADPOLE has succeeded in measuring a pulse with a
TBP of 65 000.

The limiting factor in multi-shot MUD TADPOLE is the
dynamic range of the camera. The camera only sees fringes from
the temporal region of the unknown pulse that temporally overlaps
with the reference pulse. All other temporal regions yield only rela-
tively constant background. For long enough unknown pulses, the
fringes will no longer be discernable.

The main disadvantage of this setup for MUD TADPOLE is
that it is multi-shot and so is not applicable to pulse trains in
which every pulse is different. Also, the measurable spectral width
is still limited by the spectrometer, and, as with other SI-based
approaches, the reference pulse spectrum must contain the
unknown pulse spectrum.

2. Single-shot MUD TADPOLE

It is straightforward to extend the multiple-reference pulse
idea to a single-shot measurement geometry. It turns out to be

possible using a trick that is often employed for single-shot pulse
measurement, tilting the pulse in order to achieve the required
large range of delays. The variably delayed reference pulse overlaps
with the unknown pulse at different heights.''* Alternatively, differ-
ent angles can correspond to different delays, yielding different
fringe spacings for different temporal chunks of the pulse. In other
words, the fringe spacing codes for the delay (see Fig. 47).

TBPs as large as 4500 have been measured on a single shot
with this device,''* a significant improvement over all other
approaches. The main limitation is not yet the dynamic range of
even an inexpensive eight-bit camera, but the pulse front tilt and
hence the delay range producible by a diffraction grating. With
other, more dispersive optics, or just larger diffraction gratings and
cameras, single-shot MUD TADPOLE should be scalable to even
more complicated pulses.

VI. SPECTRAL PHASE INTERFEROMETRY FOR DIRECT
ELECTRIC-FIELD RECONSTRUCTION (SPIDER)

Frustrated by the slow convergence of the FROG algorithm on
available computers in the 1990s, researchers sought a non-
iterative, that is, “direct” self-referenced intensity-and-phase pulse-
measurement technique. They looked to SI, which, as we have seen,
has a direct pulse-retrieval algorithm. In its usual configuration,
however, SI cannot be self-referencing because it measures only
phase differences, and, if the unknown pulse interferes with itself,
the spectral-phase difference necessarily vanishes and is at most
only the deliberately introduced delay between the two replicas of
the pulse. Either way, it yields no pulse phase information.

However, nonlinear-optical variations of SI were introduced
that overcame this limitation, allowing the measurement of pulses
without the need for a reference pulse. The first and most popular
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FIG. 46. Multi-shot MUD TADPOLE principle. The left column shows the SEA TADPOLE traces measured at a few different reference pulse delays. E(f) is extracted from
these just as in SEA TADPOLE (middle and right columns). The concatenation, done in the time domain, is illustrated at the bottom. The individual colors illustrate individ-
ual measurements. The final concatenated, reconstructed pulse is shown at the bottom, left. Reproduced with permission from Opt. Express 18, 6583 (2010). Copyright

2010 The Optical Society.

has been Spectral Phase Interferometry for Direct Electric-field
Reconstruction (SPIDER)'"” (see Figs. 48 and 49), and another is
self-referenced spectral interferometry.''®

SPIDER involves performing SI on the pulse and a frequency-
shifted version of itself. This frequency shift dw is called the spectral
shear, and it can be induced in a self-referenced way by sum-
frequency generation between two replicas of the pulse under test
and a third strongly chirped replica of the pulse. With some simpli-
fication, the SPIDER trace is given by

Sspiper(@) = S(@) + S(@ + dw)

+ 24/S(w)+/S(w + dw)cos[p(w + dw) — p(w) + wT],

(18)

where T is the delay between the two replicas. The SPIDER phase
(the quantity inside the cosine) can be approximated by

d
Bespiper = 90 +50) — ¢(0) + 0T ~ 60 =L £ 0T, (19)

The derivative, de¢/dw, is the group delay, 7(w), of the pulse vs
frequency. Consequently, any deviations of the fringe phase from
linearity are due to variations in the pulse group delay.

SPIDER does not measure the spectrum and instead uses a
separate, independent measurement of it. SPIDER’s ambiguities are
similar to those of FROG: the absolute phase, the pulse arrival
time, and relative phases of multiple pulses and multiple modes.
Like most FROG versions, it does not have an ambiguity in the
direction of time.

The SPIDER phase A@spippr(®) between the two pulses can
be analytically retrieved from the measured Sgpiprr(®w) interfero-
gram by extracting the phase of its inverse Fourier transform (with
a specified finite frequency range). This algorithm is known as the
Takeda algorithm''” for numerical phase demodulation. As in
standard spectral interferometry, SPIDER relies on a Fourier filter-
ing approach. Then, it isolates one of the modulation sidebands,
e.g., the positive modulation sideband, from which one can simply
extract Agp(w) =wT by applying the complex logarithm (or arg
function) to this modulation term. An alternative method for
reconstructing the complex-valued sideband is given by the Hilbert
transform,’® and a third method is the use of wavelets.''” All
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with the unknown pulse, and hence yields a different fringe spacing. The

unknown field is retrieved from multiple SEA TADPOLE traces, separable from Pulses after

each other on a single camera frame based on their fringe spacings, and con- crystal

catenating the results obtained from each trace. Reproduced with permission

from www.frog.gatech.edu. t
approaches ultimately isolate the underlying spectral phase differ- FIG. 49. SPIDER principle. The undistorted double pulse performs sum fre-
ence, removing the constant group delay corresponding to the quency generation with two different temporal regions and hence two different
interference of identical pulses, and any deviation from a linear wavelengths of the chirped pulse. This procedure yields two pulses, one
relation vs w indicates the SI of two pulses with different phases. wavelength-shifted and delayed compared to the other. As a result, performing

spectral interferometry with them yields a phase that is ideally the derivative of
the spectral phase. Reproduced with permission from www.frog.gatech.edu.
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simple block of glass whose dispersion stretches the pulse. Also, a simple etalon
replaces the Michelson interferometer. The latter design is used mainly for
few-cycle pulses. Reproduced with permission from www.frog.gatech.edu.

the setup, it is preferred to implement both the pulse separation T
and the dispersion of the stretched pulse using solid-state compo-
nents, e.g., employing an etalon and a glass block, respectively, as
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shown in Fig. 48 (bottom). This arrangement provides two replica
pulses and one chirped pulse with nearly identical pulse energies
and has been shown to provide the optimum efficiency in the sum-
frequency process.'”’

Other variants of SPIDER address some of the problems
inherent in this method. The first improvement was
zero-additional phase SPIDER (ZAP-SPIDER),"”" in which the
role of the replicas and the chirped pulse is inverted, and two
chirped pulses with a separation T interact with one short replica
that can be generated by a surface reflection. Consequently, the
latter does not experience any temporal stretching in beam split-
ter substrates or in an etalon, which makes ZAP-SPIDER a better
approach for the ultraviolet range. If the SPIDER setup uses two
chirped pulses, one can also replace the dispersive element by two
narrowband interference filters, which filter out different spectral
portions from the input pulse.'** This replacement is one of the
central ideas of two-dimensional spectral shearing interferometry
(2DSI),'*” which additionally exploits the concept of spatial
shearing interferometry, which is also utilized in the spatially
encoded arrangement for SPIDER (SEA-SPIDER),'** analogous
to SEA TADPOLE. While traditional SPIDER only requires a one-
dimensional detector array in the Fourier plane of the spectro-
graph, both 2DSI and SEA-SPIDER rely on two-dimensional
interferograms, require area-scan rather than line-scan cameras,

TUTORIAL scitation.org/journall/jap

and an imaging spectrograph. The increased experimental com-
plexity pays off in the averaging effect from the multiple parallel
interferograms recorded in the individual lines of a CCD camera.
Finally, another, less related, method is self-referenced SL,'e
which involves performing SI between the pulse field and its cube
(which is usually shorter), which has been used on occasion to
measure amplified pulses.

A SPIDER-measured pulse is shown in Fig. 50.

All multi-shot versions of SPIDER, however, have the same
significant drawback: if there is any pulse-shape instability, they
measure only the coherent artifact””™*' This problem occurs
because SPIDER is inherently interferometric; random components
in the pulse yield fringes that cancel out of the measurement, yield-
ing only an approximately constant background, which is necessar-
ily ignored in SPIDER pulse retrieval. Ignoring the background
leaves only the stable component to yield SPIDER fringes and
hence the retrieved pulse (see Fig. 51).

This drawback can alternatively be seen by realizing that
SPIDER measures the average spectral phase of the pulses in a
train. Long complicated pulses have complicated spectral phases.
But if the pulses are all different, their average spectral phase tends
to be a simple flat curve, which corresponds to the shortest pulse
for a given spectrum. This average spectral phase is precisely the
frequency domain description of the coherent artifact.
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FIG. 51. Simulated SPIDER measurements of a stable and two unstable trains
of pulses (the same trains used for analogous studies for autocorrelation and
FROG earlier). Note that SPIDER only measures the coherent artifact (the
stable component of the pulse). Therefore, SPIDER cannot distinguish a stable
train of short simple pulses from an unstable train of long complicated pulses. In
general, SPIDER yields only a lower bound on the pulse length. Reproduced
with permission from Ratner ef al., Opt. Lett. 37, 2874 (2012). Copyright 2012
The Optical Society.

The background could, in principle, yield clues as to the pulse
train stability. Unfortunately, the background in SPIDER cannot be
distinguished from identical background due to benign misalign-
ment effects that are unavoidable in SPIDER devices. This ambigu-
ity results in problems determining the stability and pulse length of
pulses in a train of pulses. As shown in the simulations of Fig. 51, a
mere 2% background corresponds to an under-estimate of the
pulse length by a factor of 2.2, and 10% corresponds to an under-
estimate of a factor of 4.5. As a result, like other techniques that
only measure the coherent artifact, SPIDER cannot distinguish a
stable train of short simple pulses from an unstable train of long
complicated pulses.

Consequently, in general, SPIDER only yields a lower bound
on the pulse length. Also, it does not see satellite pulses at all when
their relative phase is random,’”” which is often the case when lasers
double-pulse due to over-pumping—one of the main reasons for
making pulse measurements. Unfortunately, readily available
devices, such as spectrometers, also cannot distinguish between
these diametrically opposed types of pulses. For example, spectral
fringes due to unstable double pulses or variable complicated
pulses also cancel out in measured spectra. In general, as men-
tioned earlier, the task of determining a pulse train’s shape stability
falls to the pulse-measurement technique.

Single-shot measurements could help, but variations from
place to place in the beam could also give rise to similar effects

TUTORIAL scitation.org/journall/jap

(although the effect of these spatial variations of field on the mea-
sured spectrum by spectrometer has not been studied as yet), and
SPIDER is rarely used for single-shot measurements.

There is a way to be certain that a SPIDER measurement is
of a stable pulse train and is accurate, and that is if it has a 100%
fringe visibility.”™"' Unfortunately, SPIDER measurements
rarely achieve this value, and the question always remains as to
whether the background that is present is due to benign mis-
alignment issues or instability. A mere 2% background due to
instability can correspond to a pulse length error of a factor of
two or more.

While SPIDER has been extensively tested and compared
with FROG for well-known stable lasers, the above issue neces-
sarily presents a difficult dilemma for researchers who use
SPIDER on a new laser: because there is no feedback regarding
the measurement quality and SPIDER measures only the
coherent artifact, it is prone to yielding shorter pulses in
the presence of otherwise undetected instability. It is true that
standard ultrafast lasers are more stable than ever, but many
are not, especially extremely short pulses at the edge of technol-
ogy, for which SPIDER is often used, so users of SPIDER should
be very cautious that measurements using it do not under-
estimate their pulse length. Also, it should be pointed out that
the original motivation for SPIDER—that the FROG pulse-
retrieval algorithm was slow—has entirely disintegrated due to
the many-orders-of-magnitude increase in computing speed that
has occurred over the past three decades.

On the other hand, SPIDER is very useful when the average
spectral phase is the actual desired quantity. This is the case, for
example, when tuning the dispersion of a pulse compressor.

VII. SPATIOTEMPORAL PULSE MEASUREMENT

The propagation of an ultrashort pulse is fundamentally spa-
tiotemporal, meaning that its electric field cannot usually be sepa-
rated into a product of purely temporal and spatial fields due to
unavoidable spatiotemporal couplings.'”> Even the simple cases of
diffraction of ultrashort pulses from a circular aperture'” or the
mere focusing of them'*"'”'*"~"** results in complicated spatio-
temporal structures. As a result, measuring the pulse vs time,
averaging over spatial coordinates (x and y), or measuring the pulse
vs x and y, averaging over time, are not always useful. Complete-
spatiotemporal-resolution measurements, on the other hand,
enable direct visualization of these phenomena, so that they can be
studied and understood in greater detail.

Complete spatiotemporal pulse-measurement techniques
determine E(x,y,z,w) or, equivalently, E(x,),zt). Unfortunately, no
method exists that, by itself, measures all this information.

Fortunately, it is not necessary to measure the z-dependence
because it can be obtained from E(x,yw) using a diffraction inte-
gral. Unfortunately, we will see that, even this quantity cannot
usually be measured in its entirety, and some information will be
missing from it, in which case this additional information must
be obtained.

Most multi-shot spatiotemporal-measurement methods are
based on spectral interferometry (SI)."*>'**
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FIG. 52. Calculated spatially resolved spectral interferograms of pulses with three different spatiotemporal couplings. Left: pulse front tilt. Center: pulse front curvature.
Right: spatial chirp. It is assumed that the transform-limited reference pulse is free of spatiotemporal couplings. Reproduced with permission from Akturk ef al., J. Opt. 12,

093001 (2010). Copyright 2010, IOP Publishing.

A. Spatially resolved spectral interferometry: One
spatial dimension

It is straightforward to simply perform standard SI, using the
other dimension of the camera to obtain spatial information of the
beam in one spatial direction (see Fig. 52). Such an approach has
been used to measure beams with spatiotemporal couplings, such
as the pulse front distortions caused by lenses.'*>'*® The drawback
is that a pulse cannot be measured directly at a focus, where the
beam is too small, so the beam had to be first recollimated, by
propagating a second time through the lens. The advantage is that
E(y,0) can be retrieved from a single camera frame.

Spatially resolved spectral interferometry was also recently
adapted for spatiotemporal measurements of a pulse with a huge
pulse front tilt of ~89.9°. This extreme pulse front tilt was obtained
using an etalon as the spectrometer’s dispersive element, rather
than a diffraction grating."”” Analogously, spectrally resolved
spatial interferometry can provide similar information.'**~"*

B. Fiber-based scanning spatiotemporal pulse
measurement: Two and three spatial dimensions

SEA TADPOLE and STARFISH both naturally extend to
spatiotemporal measurement in gathering spatial information by
scanning a small fiber tip or probe through the light beam of inter-
est. Using such methods, SI has been integrated into a scanning
microscope to collect spatiotemporal information from a small
sample.'” Such methods have the same constraints as SI; for
example, they require a well-characterized reference pulse that
contains the spectrum of the unknown pulse, which now must
also be spatially uniform. A significant benefit of using an optical
fiber for introducing the unknown beam into a measurement
device is that the fiber provides spatial resolution—as small as a
few nanometers. The fiber collects only the light from a small
spatial sample. The tip of the fiber can then be freely scanned
through three-dimensional space, measuring E(w) at each fiber
position, yielding the spatiotemporal electric field of the unknown
pulse E,i(xyzw) with high spatial, temporal, and spectral
resolutions.

In scanning SEA TADPOLE (see Fig. 53), a single-mode fiber
in the unknown arm is mounted on an x,y,z translation stage, so
that the spectrum and spectral phase of the unknown pulse are
determined at multiple fiber positions in space.'*'~'** 3D-scanning
SEA TADPOLE was adapted to a measurement from a supercon-
tinuum laser source (with sub-3 fs temporal resolution) for the gen-
eration and measurement of Airy-Bessel light bullets.'**

Because of the high sensitivity of SEA TADPOLE, even very
large beams can be measured, in which only a tiny fraction of the
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FIG. 53. Scanning SEA TADPOLE experimental setup. The laser beam is split
into the reference and unknown arms in a Mach-Zehnder interferometer. The
spatially uniform reference pulse goes through a delay line and is focused into
one of the single-mode fibers (for nearly unlimited bandwidth the so-called end-
lessly single-mode photonic crystal fibers can be used). E(f) of the reference
pulse can be characterized by sending it with a flip mirror to a FROG device. In
the unknown arm of the interferometer, the light is directed to the optical system
being studied (the “experiment”) and the resulting field is sampled at every x, y,
and z point of interest by the other single-mode fiber. The outputs of the fibers
are placed at the entrance of an imaging spectrometer with a few mm separa-
tion between them, so after the collimating lens, they cross at a small angle at
the camera, which records the 2D spectrally resolved spatial interference
pattern. The interference is measured for each fiber position and E(w) is recon-
structed from each interferogram yielding E(x, ; z, ). Reproduced with permis-
sion from Bowlan et al., Opt. Express 15, 10219 (2007). Copyright 2007 The
Optical Society.
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pulse energy is coupled in the small fiber tip. Also, a SEA TADPOLE
measurement at a single fiber position is proportional to the product
of the reference and unknown fields, so the much more intense refer-
ence pulse homodynes and effectively amplifies the unknown pulse,
making such a measurement even more sensitive.

The spatial resolution of scanning SEA TADPOLE can be
improved to <1 um using a near field scanning optical microscopy
(NSOM) fiber probe, rather than a single-mode fiber.""” NSOM
fibers have been used in the past to measure the spatial intensity
distribution of tightly focused continuous-wave lasers. Using an
NSOM probe with an aperture diameter of 500 nm, the complete
electric field of focused pulses with numerical apertures (NAs) as
high as 0.44 and tiny features in their intensity of <1 #m have been
measured with SEA TADPOLE.'”* NSOM probes have also been
used in SEA TADPOLE to measure the refractive index and group
velocity in a waveguide structure by collecting the local evanescent
field into the fiber probe.'** In addition, NSOM probes have been
combined with Fourier transform spectral interferometry to charac-
terize the local plasmons excited by ultrashort laser pulses in gold
nanostructures.

Unfortunately, scanning in SEA TADPOLE cannot be per-
formed stably enough to avoid a loss of the absolute spatial
phase ¢@o(x,,00). In some cases, for example, to measure spatio-
temporal couplings or to see the pulse front, the spatial phase is
not of interest. However, there are many benefits to having this
additional spatial information. If it is known, the field E(x,y,w)
only needs to be measured at one value of z, and then it can be
numerically propagated to any other plane using a diffraction
integral.

Fortunately, it has been demonstrated that this information is
still actually contained in the measured SEA TADPOLE data as long
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as E(x,y,0) is measured for at least two values of z.'*” Using a simple
phase-diversity approach, which involves Fresnel-transforming back
and forth and replacing the intensity or spectrum by the known
intensity or spectrum (often called a Gerchberg-Saxton-like
phase-retrieval algorithm), the absolute spatial phase of a pulse can
be very accurately and reliably numerically recovered. In addition,
the complete spatiotemporal field at all locations is more accurately
determined by this process.

C. Spatiotemporal measurement examples

The first motivation for scanning SEA TADPOLE was to
measure the spatiotemporal field of focused pulses propagating
using various lenses, including simple plano-convex lenses,
aspheric lenses made of molded PMMA, achromatic doublets, and
microscope objectives and lenses with numerical apertures as high
as 0.44.'"%"** Figure 54 shows one such measurement exhibiting
the so-called “fore-runner pulse” resulting from the combination of
diffraction at the edge of the lens and chromatic aberration.'”"~"*
In this measurement, a 500 nm NSOM probe was used to resolve
the sub-micrometer spatial features.

Another application of SEA TADPOLE has been to measure
superluminal Bessel-X pulses, first demonstrated in Ref. 148. SEA
TADPOLE yields highly accurate measurements of the group veloc-
ity. Although the superluminal speed of Bessel-X pulses had been
measured before,"*” the full spatiotemporal field of a Bessel-X pulse
had never been directly recorded with simultaneous high spatial
and temporal resolutions.'"' Figure 55 shows the spatiotemporal
field E(x,z,t) from these measurements, side-by-side with the corre-
sponding simulations. These results can be considered “snapshots
in flight” of the Bessel-X pulse.

FIG. 54. Measured E(x,z,1) for a pulse
focused with a 0.44 NA aspheric lens.
Each box shows E(x,f) at a certain dis-
tance from the focus (z) written above
the box. The color in the plot is the
instantaneous frequency of the pulse
as indicated by the color bar. Here the
color also varies along the x-direction
due to the severe chromatic aberra-
tions that are present. The combination
of overfiling the lens and chromatic
aberrations result in the additional
“fore-runner” pulse ahead of the main
pulse, for z<0. Reproduced with per-
mission from Bowlan et al., Opt.
Express 16, 13663 (2008). Copyright
2008 The Optical Society.
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FIG. 55. Left: the measured spatiotemporal amplitude of the Bessel-X pulse at three different distances after the axicon. Right: the corresponding simulations. Amplitude is
indicated by the color, and is normalized for each field to have a maximum of 1. The white bar on the time axis emphasizes the zero of time—a reference frame moving
along with the reference pulse at the speed of light. Reproduced with permission from Bowlan et al., Opt. Lett. 34, 2276 (2009). Copyright 2009 The Optical Society.

Note that the central maximum of the pulse has a width of
only ~20 um and does not significantly diverge over 8 cm of propa-
gation, a well-known and important characteristic of Bessel pulses.
In comparison, a Gaussian beam of the same waist size would have
expanded by 26 times. The superluminal velocity of the pulse is
apparent in these plots because the reference pulse, determining
the center of the time-windows, propagates at the speed of light
(and is indicated by the small white bars on the snapshots and
labeled by t=0). The measured group velocity of this Bessel-X
pulse is within 0.001% of the theoretically predicted value,
1.000 12¢. Similarly, SEA TADPOLE has been used to study acceler-
ating and decelerating Bessel pulses'”’ and subluminal pulsed
Bessel beams generated by diffractive axicons.'*>'**

Another interesting measurement made using SEA TADPOLE
is the formation and evolution of Arago’s spot in the shadow
region behind an opaque circular disk that leads to a better under-
standing of diffraction phenomena (see Fig. 56)."”' The SEA
TADPOLE technique has also been used for the generation and
characterization of ultrabroadband Airy pulses that exhibit nondis-
persive behavior,'”>'*’

D. Other spatiotemporal-measurement methods

Other methods have been developed for measuring the
complete spatiotemporal intensity and phase on a multi-shot basis.
One such technique, also with nanometer-scale spatial resolution,
is called nanoFROG.'** It involves making a FROG trace for the
beam at a point in space using a nanometer-sized nonlinear crystal
placed at that point. This technique yields the intensity and phase
vs time for that point, with the usual trivial FROG ambiguities.
While they comprise a larger set of ambiguities than the spatial
phase ambiguity that arises in SEA TADPOLE, they should also be
removable using the phase-diversity approach described earlier.'*”

E. Spatiotemporal measurement on a single shot:
STRIPED FISH

Although the aforementioned complete spatiotemporal
pulse-measurement techniques work well, and some even have
sub-micrometer spatial resolution, they are all inherently multi-shot.
But many applications—in particular, high-intensity extremely-low-
rep-rate pulse measurements—require single-shot operation.

In attempting to take complete spatiotemporal measurement
to three or even four dimensions, an obvious observation must be
made. There are three spatial dimensions and only one temporal
dimension, so it makes more sense to adapt a spatial-measurement
technique to spatiotemporal measurement than to adapt a
temporal-measurement technique. Arguably, the most common
and powerful spatial intensity-and-phase technique is holography.
Thus, it is reasonable to expect that spectrally resolved digital
holography could be used to measure the complete spatiotemporal
intensity and phase of ultrashort pulses, indeed, on a single shot.

The difference between the spatiotemporal measurement
problem and standard holography is that holograms are usually
generated using monochromatic beams. Consequently, they have no
temporal dependence and so need only yield the spatial intensity
and phase. Pulses, on the other hand, are broadband. Also, the rela-
tive phases of the various frequencies of the pulse must be mea-
sured in order to obtain the correct temporal dependence.

So the obvious approach is to record the three-dimensional
unknown field information, E,u(x,y.0), using multiple two-
dimensional digital holograms, each at a different frequency. By
using a digital camera with high pixel count and small pixel size, it
is possible to illuminate different regions of the imaging sensor
with digital holograms, each recorded at a different frequency.

In order to determine the relative phases of the many
different-frequency holograms, the reference pulse intensity and
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FIG. 56. Formation and evolution of the Arago spot behind an opaque disk 4 mm in diameter. The magnitude of the electric field E is shown at three different propagation
distances z in pseudo-color code according to the color bar (white has been taken for the zero of the scale in order to better reveal areas of weak field). Reproduced with
permission from Saari et al., Opt. Express 18, 11083 (2010). Copyright 2010 The Optical Society.

phase must be measured in time or frequency.'”” The reference
pulse must also have relatively simple, known spatial properties and
so must be spatially filtered to remove any possible spatiotemporal
couplings.

Finally, as usual, the device should be simple and usable by
those not skilled in pulse measurement. A device with these charac-
teristics is STRIPED FISH (Spatially and Temporally Resolved
Intensity and Phase Evaluation Device: Full Information from a
Single Hologram).'”>'*® At the time of this writing, STRIPED
FISH is the only technique ever proposed to measure the complete
spatiotemporal intensity and phase on a single shot.

A schematic of the STRIPED FISH apparatus is shown in
Fig. 57. It comprises a very simple setup of only a coarse two-
dimensional diffractive optical element (DOE), an interference
bandpass filter (IBPF), imaging optics, and a camera. STRIPED
FISH uses a previously spatially smoothed and temporally charac-
terized reference pulse, accomplished at an earlier point using a
spatial filter and a FROG measurement of the spatially filtered
pulse. These operations can be performed on a replica of the
unknown pulse, making the technique self-referenced. The pulse to
be measured and the known reference pulse cross at a small vertical
angle on the DOE, which simultaneously generates multiple pairs
of beams at divergent different angles.

The DOE is also rotated slightly, so the horizontal propagation
angle is different for each beam pair. Because the IBPF’s transmis-
sion wavelength varies with horizontal incidence angle, it
wavelength-filters each pair of beams to be quasi-monochromatic
and with different center wavelengths. The beam pairs then overlap
at the camera, generating an array of quasi-monochromatic

holograms, each at a different wavelength. The spatiotemporal infor-
mation of the unknown pulse is contained within multiple holo-
grams, which are recorded simultaneously on the camera frame.

In the recorded STRIPED FISH trace, for each hologram on
the camera, a Fourier filtering algorithm (similar to that of SEA

Variable-
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Slightly wavelength holograms
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Unknown
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FIG. 57. Conceptual schematic of STRIPED FISH. Reproduced with permission
from www.frog.gatech.edu, and Guang et al., J. Opt. Soc. Am. B 31, 2736
(2014). Copyright 2014 The Optical Society.

J. Appl. Phys. 128, 171103 (2020); doi: 10.1063/5.0022552
Published under license by AIP Publishing.

128, 171103-37


https://www.frog.gatech.edu
https://aip.scitation.org/journal/jap

Journal of
Applied Physics

Measured Trace

TUTORIAL

scitation.org/journalljap

(a)
;e
(e)
o.. Eunk(xryl w)
1 o
'l
. (d) IFT vs. w
Divide Ey. ¢ (X, Y, w;)
(b) (c)
Eunk (x' Y, t)
“Final Result”
k

k

X

X

FIG. 58. lllustration of the STRIPED FISH retrieval algorithm. Amplitudes are plotted for complex quantities. (a) Conceptual schematic of multiple measured holograms of
different frequencies are recorded on the camera. Axes are simply the two spatial coordinates of the camera frame. (b) A hologram of a certain frequency w; is selected. A
two-dimensional Fourier transform (2DFT) is taken over spatial dimensions x and y. (c) The oscillating interference term is extracted and inversely processed by a 2DFT
into the spatial domain, obtaining a product term E,q(x.y,0;) Eref'(X.)0). (d) Dividing the product term by the conjugated reference field Er*(x,y.@;) yields the unknown
spatial field at frequency w;, Eyn(X.y,@)). (€) Performing steps (b) through (d) for every hologram yields E,q(x,y@); then E,q(x,;f) is obtained by an inverse Fourier trans-
form (IFT) into the time domain. Reproduced with permission from Gabolde and Trebino, J. Opt. Soc. Am. B 25, A25 (2008). Copyright 2008 The Optical Society.

TADPOLE) is applied to obtain the unknown field E,,,i(x,y0) at
that frequency. Once the unknown fields at all frequencies are
obtained, an inverse Fourier transform vs frequency is performed
to convert the spatio-spectral field E,,,(x,y,) to the spatiotemporal
pulse profile E,,x(x,5t). The pulse-retrieval algorithm is shown
in Fig. 58.

Also, once E,,i(x,y,0) is obtained, diffraction integrals can be
used to propagate the field into different z-locations as well.

The STRIPED FISH trace, comprising multiple spectral digital
holograms, is quite informative. After spatial filtering, the reference
pulse contains no spatiotemporal coupling, and the spatio-spectral
information of the unknown pulse is encoded in the STRIPED
FISH trace."”” Specifically, for a certain frequency, the unknown
pulse’s spatial structure is contained within each hologram: the
spatial amplitude is represented by the intensity distribution and
the spatial phase by the fringe shape across that hologram.
Likewise, for each location, the unknown pulse’s spectral informa-
tion is reflected by multiple holograms: the spectral amplitude is
represented by the intensity variations and the spectral phase is
indicated by the fringe shifts among different holograms.

To illustrate these effects, simulated STRIPED FISH traces are
shown in Fig. 59 for the cases of temporal double pulses and spatial

double pulses. From the traces [Figs. 59(a) and 59(b)], we can clearly
see the spectral intensity variations among different holograms. Also,
from their fringe-shifting (e.g., the upper left hologram shows a
shifted fringe pattern compared to the lower right one), we know
that the spectral phase of the unknown pulse is varying with respect
to different holograms or different frequencies.

Similarly, the spatial effects are demonstrated by considering a
pair of spatial double pulses. Two spatial pulses are assumed to be
propagating in the same direction, the left of which is half the ampli-
tude (therefore quarter intensity) as the right one. To show the
spatial phase variation, a ® phase jump was introduced between the
two component pulses. As shown in Figs. 59(c) and 59(d), the left
pulse appears dimmer than the right one, indicating different spatial
amplitudes. Also, in the middle of each hologram, we observe a
fringe discontinuity due to the introduced spatial phase jump.

Thus, it is possible to quickly identify various significant
spatial-spectral (or spatiotemporal) structures of the unknown
pulse even before complete retrieval, by observing the recorded
STRIPED FISH trace on camera.

STRIPED FISH has been used to measure spatiotemporally
complicated ultrashort pulses. A measurement of simple spatially
chirped pulse is shown in Fig. 60, where the measured pulse intensity
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FIG. 59. STRIPED FISH traces for double pulses. (a) Pattern of the temporal double pulses, with equal intensities and = phase jump between the two component pulses
in the absence of the reference pulse. (b) The STRIPED FISH holograms of the temporal double pulses. (c) Pattern of the spatial double pulses, with the left pulse of one
fourth intensity as the right pulse in the absence of the reference pulse. A m phase jump was introduced between the two pulses. (d) The STRIPED FISH holograms of
the spatial double pulses. Reproduced with permission from Guang et al., Appl. Opt. 54, 6640 (2015). Copyright 2015 The Optical Society.
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FIG. 60. STRIPED FISH measurement of a spatially chirped pulse. (a) Measured intensity along x and t. (b) Measured intensity along y and t. Color is the instantaneous
frequency. Reproduced with permission from Gabolde and Trebino, J. Opt. Soc. Am. B 25, A25 (2008). Copyright 2008 The Optical Society.
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FIG. 61. Measured delay-scanned STRIPED FISH results of output pulses from
multi-mode optical fibers with different fiber coupling situations. Each row con-
tains three snapshots of the output pulses measured by delay-scanned
STRIPED FISH for a different coupling arrangement. Top row: Centered cou-
pling situation. Second row: Small offsets in both x- and y-direction situation.
Third row: Small offset in only the x-direction. Fourth row: Large offset. All the
snapshots show the spatial intensities (by brightness) and frequencies present
(by color) at different times. Every snapshot has one or two dominant LP
modes, which are labeled in the snapshots. Reproduced with permission from
Zhu et al., Opt. Express 25, 24015 (2017). Copyright 2017 The Optical Society.

is plotted vs x-t and y-t. The height and brightness denote the field
intensity, and the color reflects the instantaneous wavelength. It is
clear that the pulse shows a spatial frequency chirp along the
x-direction whereas it has essentially no chirp along the y-direction.

A typical STRIPED FISH setup can generate ~30 holograms
at different frequencies. Each hologram typically is a ~300 x ~300
array of spatial pixels. As a result, the maximum measurable
space-time-bandwidth product is on the order of 1 000 000.

If pulses more complicated in time must be measured, more
holograms, but smaller in size, could be generated. However, given
by the practical bandwidth of the bandpass filter, STRIPED FISH is
limited in its temporal range. The longest measurable pulse is the
reciprocal of this spectral width, so pulses as long as ~10 ps can be
measured using the narrowest-band available filters. This temporal
range is usually more than adequate for measuring most ultrahigh-
intensity pulses.

TUTORIAL scitation.org/journalljap

Alternatively, the temporal-range limitation can be overcome
if a stable pulse train is to be measured, and scanning in one
dimension (the delay) can be performed. In this case, the longest
possible pulse length is the delay range, which can be ~ns in
length. One example of such cases is spatiotemporally complicated
ultrashort pulses from multi-mode optical fibers. The pulses are
stretched and modulated spatiotemporally by intermodal delay,
modal dispersion, and material dispersion in the fibers. So, delay-
scanned STRIPED FISH would be suitable for such measurement.
Snapshots of movies of pulses with different fiber coupling situa-
tions from multi-mode optical fibers measured using this approach
are shown in Fig. 61.

Such complicated pulses are best displayed using movies based
on spectrograms due to the massive amount of information mea-
sured about the pulse. This plotting scheme avoids artifacts in plot-
ting instantaneous frequency, e.g., when the pulse contains all of its
spectrum, the pulse appears green (instantaneous frequency)
instead of white (what it should be).'”*7'¢!

VIIl. CONCLUSIONS

Despite some confusion and missteps, the field of ultrashort-
pulse measurement has progressed spectacularly in the past three
decades. It has evolved from a position well behind that of pulse
generation to now leading it in most areas. In 1990, only blurry
black and white images were measurable and then only for simple
pulses. Worse, such pulse measurements contained misleading arti-
facts. Today, it is possible to measure high-definition full-color spa-
tiotemporal images of most pulses, including those as complicated
in time and in space-time as have ever been intentionally generated,
and pulse-shape (in)stability can also be determined easily and
with confidence. Finally, pulse retrieval is now highly reliable, even
for extremely complicated pulses and in the presence of significant
noise. What remains is to take advantage of these powerful
methods to better understand the pulses that arise in laboratory set-
tings and the processes that they can be used to study.

ACKNOWLEDGMENTS

The Georgia Tech authors would like to acknowledge that this
work was supported in part by the National Science Foundation
(NSF) under Grant No. ECCS-1609808. We thank one of the anon-
ymous reviewers for a number of highly helpful remarks that led to
significant clarifications throughout the manuscript and, in particu-
lar, of Fig. 14. It should further be noted that Rick Trebino owns a
small company that sells pulse-measurement devices.

DATA AVAILABILITY

Data sharing is not applicable to this article as no new data
were created or analyzed in this study.

REFERENCES

L. Cohen, Time-Frequency Analysis (Prentiss-Hall, Englewood Cliffs, NJ, 1995).
2R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort
Laser Pulses (Kluwer Academic Publishers, Boston, 2002).

3D. J. Kane and R. Trebino, paper presented at the Optical Society of America
Annual Meeting, San Jose, CA, 1991.

J. Appl. Phys. 128, 171103 (2020); doi: 10.1063/5.0022552
Published under license by AIP Publishing.

128, 171103-40


https://aip.scitation.org/journal/jap

Journal of

Applied Physics

“H. Stark, Image Recovery: Theory and Application (Academic Press, Orlando,
FL, 1987).

SE. J. Akutowicz, Trans. Am. Math. Soc. 83, 179-192 (1956).

SE. J. Akutowicz, Proc. Am. Math. Soc. 84, 234-238 (1957).

7K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, IEEE ]. Quantum Electron.
16(9), 990-996 (1980).

8D. M. Rayner, P. A. Hackett, and C. Willis, Rev. Sci. Instrum. 53(4), 537-538
(1982).

°E. S. Kintzer and C. Rempel, Appl. Phys. B 42, 91-95 (1987).

190. L. Bourne and A. J. Alcock, Rev. Sci. Instrum. 57(12), 2979-2982 (1986).
"1y, 1. Dadap, G. B. Focht, D. H. Reitze, and M. C. Downer, Opt. Lett. 16(7),
499-501 (1991).

12G. J. Dixon, Laser Focus World 33(9), 99-102, 104-105 (1997), available at
https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail &idt=2143406.
T3M. H. R. Hutchinson, I A. McIntyre, G. N. Gibson, and C. K. Rhodes, Opt.
Lett. 12(2), 102-104 (1987).

145, Tiinnermann, H. Eichmann, R. Henking,
B. Wellegehausen, Opt. Lett. 16(6), 402-404 (1991).

T5R. Wyatt and E. E. Marinero, Appl. Phys. 25, 297-301 (1981).

16]. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, and K. W. Wecht, Appl.
Phys. Lett. 11(7), 216-218 (1967).

7R, Trebino, E. K. Gustafson, and A. E. Siegman, J. Opt. Soc. Am. B 3, 1295
(1986).

184, Birmontas, R. Kupris, A. Piskarskas, V. Smil'gyavichyus, and A. Stabinis,
Sov. J. Quant. Electron. 12(6), 792-794 (1982).

T9R. A. Fisher and J. J. A. Fleck, Appl. Phys. Lett. 15(9), 287-290 (1969).

2‘)I.—H. Chung and A. M. Weiner, IEEE J. Sel. Top. Quant. Electron. 7(4),
656-666 (2001).

z‘]. C. Diels, J. J. Fontaine, and F. Simoni, in Proceedings of the International
Conference on Lasers (STS Press, McLean, VA, 1983), pp. 348-355.

22J_C. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, Appl. Opt. 24(9),
1270-1282 (1985).

23] C. Diels, Proc. SPIE 533, 63-70 (1985).

24C. Yan and J. C. Diels, J. Opt. Soc. Am. B 8(6), 1259-1263 (1991).

25 C. M. Diels, J. J. Fontaine, N. Jamasbi, and M. Lai, paper presented at the
Conference on Lasers & Electro-Optics, 1987.

265 p. Le Blanc, G. Szabo, and R. Sauerbrey, Opt. Lett. 16(19), 1508-1510
(1991).

27G. Szabé, Z. Bor, and A. Miiller, Opt. Lett. 13(9), 746-748 (1988).

28], Etchepare, G. Grillon, and A. Orszag, IEEE ]. Quantum Electron. 19(5),
775-778 (1983).

29]4 Janszky and G. Corradi, Opt. Commun. 60(4), 251-256 (1986).

30N. Sarukura, M. Watanabe, A. Endoh, and S. Watanabe, Opt. Lett. 13(11),
996-998 (1988).

3TH. Schulz, H. Schuler, T. Engers, and D. von der Linde, IEEE J. Quantum
Electron. 25(12), 2580-2585 (1989).

32R. Fischer, J. Gauger, and J. Tilgner, AIP. Conf. Proc. 172, 727-729 (1988).
33p, F. Curley, G. Darpentigny, G. Cheriau, J. P. Chambaret, and A. Antonetti,
Opt. Commun. 120(1-2), 71-77 (1995).

34A. Watanabe, H. Saito, Y. Ishida, and T. Yajima, Opt. Commun. 63(5),
320-324 (1987).

35A. Watanabe, S. Tanaka, H. Kobayashi, Y. Ishida, and T. Yajima, Rev. Sci.
Instrum. 56(12), 2259-2262 (1985).

36E, B. Treacy, J. Appl. Phys. 42(10), 3848-3858 (1971).

37R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10(5), 1101-1111 (1993).

381, Cohen, Proc. IEEE 77(7), 941-981 (1989).

394, Freiberg and P. Saari, . Quantum Electron. 19(4), 622-630 (1983).

“OR. A. Altes, ]. Acoust. Soc. Am. 67(4), 1232-1246 (1980).

415, H. Nawab, T. F. Quatieri, and J. S. Lim, IEEE Trans. Acoust. Speech Signal
Process. 31(4), 986-998 (1983).

“2R. Trebino and D. J. Kane, [EEE J. Quant. Electron. 29(2), 571-579 (1999).
“3R, Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbiigel,
and D. J. Kane, Rev. Sci. Instrum. 68(9), 3277-3295 (1997).

K. Mossavi, and

TUTORIAL scitation.org/journalljap

44p, J. Kane and R. Trebino, Opt. Lett. 18(10), 823-825 (1993).

45D, J. Kane and R. Trebino, IEEE J. Quantum Electron. 29(2), 571-579 (1993).
46K, W. DeLong and R. Trebino, J. Opt. Soc. Am. A 11(9), 2429-2437 (1994).
“7K. W. DeLong, R. Trebino, and D. J. Kane, J. Opt. Soc. Am. B 11(9),
1595-1608 (1994).

48K W, DeLong, R. Trebino, J. Hunter, and W. E. White, J. Opt. Soc. Am. B
11(11), 2206-2215 (1994).

49K W. DeLong, D. N. Fittinghoff, R. Trebino, B. Kohler, and K. Wilson, Opt.
Lett. 19(24), 2152-2154 (1994).

So0g w. DeLong, D. N. Fittinghoff, and R. Trebino, IEEE J. Quant. Electron.
32(7), 1253-1264 (1996).

51G. Taft, A. Rundquist, M. M. Murnane, I P. Christov, H. C. Kapteyn,
K. W. DeLong, D. N. Fittinghoff, M. A. Krumbiigel, J. N. Sweetser, and
R. Trebino, IEEE J. Sel. Top. Quantum Electron. 2(3), 575-585 (1996).

52T, Bendory, P. Sidorenko, and Y. C. Eldar, IEEE Signal Process. Lett. 24(5),
722-726 (2017).

53K. W. DeLong, C. L. Ladera, R. Trebino, B. Kohler, and K. R. Wilson, Opt.
Lett. 20(5), 486-488 (1995).

S%R. Jafari, T. Jones, and R. Trebino, Opt. Express 27(3), 2112-2124 (2019).

55R. Jafari and R. Trebino, IEEE J. Quantum Electron. 55(4), 1-7 (2019).

S6R. Jafari and R. Trebino, IEEE J. Quantum Electron. 56(1), 1-8 (2020).

57B. A. Richman, K. W. DeLong, and R. Trebino, “Temporal characterization of
the Stanford mid-IR FEL by frequency-resolved optical gating,” in Conference on
Lasers and Electro-Optics, edited by T. Deutsch, J. Goldsmith, D. Killinger, and
G. Valley (Optical Society of America, 1995), Vol. 15 of OSA Technical Digest,
paper No. CWEF21.

8B, Kohler, V. V. Yakovlev, K. R. Wilson, J. Squier, K. W. DeLong, and
R. Trebino, Opt. Lett. 20(5), 483-485 (1994).

59T, S. Clement, A. J. Taylor, and D. J. Kane, Opt. Lett. 20(1), 70-72 (1995).
60p, J. Kane, A. J. Taylor, R. Trebino, and K. W. DeLong, Opt. Lett. 19(14),
1061-1063 (1994).

81K. Michelmann, T. Feurer, R. Fernsler, and R. Sauerbrey, Appl. Phys. B 63(5),
485-489 (1996).

625, Backus, J. Peatross, Z. Zeek, A. Rundquist, G. Taft, M. M. Murnane, and
H. C. Kapteyn, Opt. Lett. 21, 665-667 (1996).

€3], Thomann, A. Bahabad, X. Liu, R. Trebino, M. M. Murnane, and
H. C. Kapteyn, Opt. Express 17(6), 4611-4633 (2009).

€%F. Quéré, Y. Mairesse, and J. Itatani, ]. Mod. Opt. 52(2-3), 339-360 (2005).
65p. Bowlan and R. Trebino, Opt. Express 19(2), 1367-1377 (2011).

65.-D. Yang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, Opt. Lett.
30(16), 2164-2166 (2005).

7], Zhang, A. P. Shreenath, M. Kimmel, E. Zeek, R. Trebino, and S. Link, Opt.
Express 11(6), 601-609 (2003).

68 Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and
R. S. Windeler, Opt. Lett. 27(13), 1174-1176 (2002).

S9M. M. Malley and P. M. Rentzepis, Chem. Phys. Lett. 7, 57-60 (1970).

70A. Brun, P. Georges, G. LeSaux, and E. Salin, J. Phys. D 24, 1225-1233 (1991).
718, Szatméri, F. P. Schifer, and J. Jethwa, Rev. Sci. Instrum. 61(3), 998-1003
(1990).

72G. Stibenz and G. Steinmeyer, Opt. Express 13(7), 2617-2626 (2005).

73], Hyyti, E. Escoto, and G. Steinmeyer, ]. Opt. Soc. Am. B 34(11), 2367-2375
(2017).

741, Hyyti, E. Escoto, and G. Steinmeyer, Rev. Sci. Instrum. 88, 103102 (2017).
753, Akturk, C. D’Amico, and A. Mysyrowicz, . Opt. Soc. Am. B 25(6), A63
(2008).

76L. Xu, E. Zeek, and R. Trebino, . Opt. Soc. Am. B 25(6), A70-A80 (2008).
77M. Rhodes, Z. Guang, and R. Trebino, Appl. Sci. 7(40), 137601 (2017).

78)M. Rhodes, M. Mukhopadhyay, J. Birge, and R. Trebino, J. Opt. Soc. Am. B
32(9), 1881-1888 (2015).

79M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, Laser Photonics Rev.
7(4), 557565 (2013).

80M. Rhodes, G. Steinmeyer, and R. Trebino, Appl. Opt. 53(16), D1-D11
(2014).

J. Appl. Phys. 128, 171103 (2020); doi: 10.1063/5.0022552
Published under license by AIP Publishing.

128, 171103-41


https://doi.org/10.1090/S0002-9947-1956-0080802-2
https://doi.org/10.2307/2033718
https://doi.org/10.1109/JQE.1980.1070606
https://doi.org/10.1063/1.1136978
https://doi.org/10.1007/BF00694816
https://doi.org/10.1063/1.1139029
https://doi.org/10.1364/OL.16.000499
https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2143406
https://doi.org/10.1364/OL.12.000102
https://doi.org/10.1364/OL.12.000102
https://doi.org/10.1364/OL.16.000402
https://doi.org/10.1007/BF00902986
https://doi.org/10.1063/1.1755105
https://doi.org/10.1063/1.1755105
https://doi.org/10.1364/JOSAB.3.001295
https://doi.org/10.1070/QE1982v012n06ABEH005221
https://doi.org/10.1063/1.1653002
https://doi.org/10.1109/2944.974237
https://doi.org/10.1364/AO.24.001270
https://doi.org/10.1117/12.946542
https://doi.org/10.1364/JOSAB.8.001259
https://doi.org/10.1364/OL.16.001508
https://doi.org/10.1364/OL.13.000746
https://doi.org/10.1109/JQE.1983.1071941
https://doi.org/10.1016/0030-4018(86)90435-9
https://doi.org/10.1364/OL.13.000996
https://doi.org/10.1109/3.40645
https://doi.org/10.1109/3.40645
https://doi.org/10.1063/1.37468
https://doi.org/10.1016/0030-4018(95)00346-A
https://doi.org/10.1016/0030-4018(87)90184-2
https://doi.org/10.1063/1.1138360
https://doi.org/10.1063/1.1138360
https://doi.org/10.1063/1.1659696
https://doi.org/10.1364/JOSAA.10.001101
https://doi.org/10.1109/5.30749
https://doi.org/10.1109/JQE.1983.1071890
https://doi.org/10.1121/1.384165
https://doi.org/10.1109/TASSP.1983.1164162
https://doi.org/10.1109/TASSP.1983.1164162
https://doi.org/10.1109/3.199311
https://doi.org/10.1063/1.1148286
https://doi.org/10.1364/OL.18.000823
https://doi.org/10.1109/3.199311
https://doi.org/10.1364/JOSAA.11.002429
https://doi.org/10.1364/JOSAB.11.001595
https://doi.org/10.1364/JOSAB.11.002206
https://doi.org/10.1364/OL.19.002152
https://doi.org/10.1364/OL.19.002152
https://doi.org/10.1109/3.517026
https://doi.org/10.1109/2944.571757
https://doi.org/10.1109/LSP.2017.2690358
https://doi.org/10.1364/OL.20.000486
https://doi.org/10.1364/OL.20.000486
https://doi.org/10.1364/OE.27.002112
https://doi.org/10.1109/JQE.2019.2920670
https://doi.org/10.1109/JQE.2019.2950458
https://doi.org/10.1364/OL.20.000483
https://doi.org/10.1364/OL.20.000070
https://doi.org/10.1364/OL.19.001061
https://doi.org/10.1007/s003400050113
https://doi.org/10.1364/OL.21.000665
https://doi.org/10.1364/OE.17.004611
https://doi.org/10.1080/09500340412331307942
https://doi.org/10.1364/OE.19.001367
https://doi.org/10.1364/OL.30.002164
https://doi.org/10.1364/OE.11.000601
https://doi.org/10.1364/OE.11.000601
https://doi.org/10.1364/OL.27.001174
https://doi.org/10.1016/0009-2614(70)80248-2
https://doi.org/10.1088/0022-3727/24/8/001
https://doi.org/10.1063/1.1141207
https://doi.org/10.1364/OPEX.13.002617
https://doi.org/10.1364/JOSAB.34.002367
https://doi.org/10.1063/1.4991852
https://doi.org/10.1364/JOSAB.25.000A63
https://doi.org/10.1364/JOSAB.25.000A70
https://doi.org/10.3390/app7010040
https://doi.org/10.1364/JOSAB.32.001881
https://doi.org/10.1002/lpor.201200102
https://doi.org/10.1364/AO.53.0000D1
https://aip.scitation.org/journal/jap

Journal of

Applied Physics

81]. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, Opt. Lett.
37(14), 2874-2876 (2012).

82, Escoto, R. Jafari, R. Trebino, and G. Steinmeyer, Opt. Lett. 44(12),
3142-3145 (2019).

855, Linden, H. Giessen, and J. Kuhl, Phys. Status Solidi B 206(1), 119-124
(1998).

84D, Reid, P. Loza-Alvarez, C. Brown, T. Beddard, and W. Sibbett, Opt. Lett.
25(19), 1478-1480 (2000).

85B. Richman, M. Krumbiigel, and R. Trebino, Opt. Lett. 22(10), 721-723
(1997).

86A. Lanin, A. Voronin, A. Fedotov, and A. Zheltikov, Sci. Rep. 4, 6670 (2014).
87p_ O’Shea, M. Kimmel, X. Gu, and R. Trebino, Opt. Lett. 26(12), 932-934
(2001).

88C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, Opt. Commun. 186(4-6),
329-333 (2000).

894, G. Akmanov, A. 1. Kovrigin, and N. K. Podsotskaya, Radio Eng. Electron
Phys. 14, 1315 (1969).

20D, H. Auston, Opt. Commun. 3, 272 (1971).

915, Akturk, M. Kimmel, P. O’Shea, and R. Trebino, Opt. Express 11(5),
491-501 (2003).

925 Akturk, M. Kimmel, P. O’Shea, and R. Trebino, Opt. Express 11(1), 68-78
(2003).

93], Cohen, D. Lee, V. Chauhan, P. Vaughan, and R. Trebino, Opt. Express
18(16), 17484-17497 (2010).

943, Akturk, M. Kimmel, P. O’Shea, and R. Trebino, Opt. Lett. 29(9), 1025-1027
(2004).

95M. Van Noort, L. Der Voort, and M. Lfdahl, Sol. Phys. 228(1), 191-215
(2005).

96R. J. Steriti and M. A. Fiddy, Opt. Lett. 19(8), 575-577 (1994).

97T, C. Wong and R. Trebino, J. Opt. Soc. Am. B 30(11), 2781-2786
(2013).

98T, C. Wong, J. Ratner, V. Chauhan, J. Cohen, P. M. Vaughan, L. Xu,
A. Consoli, and R. Trebino, J. Opt. Soc. Am. B 29(6), 1237-1244 (2012).

99T. C. Wong, J. Ratner, and R. Trebino, J. Opt. Soc. Am. B 29(8), 1889-1893
(2012).

199C, Froehly, A. Lacourt, and J. C. Viénot, Nouv. Rev. D’Opt. 4, 183-196
(1973).

191D, N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings,
M. A. Krumbiigel, K. W. DeLong, R. Trebino, and I. A. Walmsley, Opt. Lett.
21(12), 884-886 (1996).

1028 Alonso, M. Miranda, I. J. Sola, and H. Crespo, Opt. Express 20(16),
17880-17893 (2012).

103C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, . Opt. Soc. Am. B
17(10), 1795-1802 (2000).

104p_ Bowlan, U. Fuchs, R. Trebino, and U. D. Zeitner, Opt. Express 16(18),
13663-13675 (2008).

105p Bowlan, P. Gabolde, M. A. Coughlan, R. Trebino, and R. J. Levis, |. Opt.
Soc. Am. B 25(6), A81-A92 (2008).

106p  Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and
S. Akturk, Opt. Express 14(24), 11892 (2006).

107p, Bowlan, P. Gabolde, and R. Trebino, Opt. Express 15, 10219-10230
(2007).

108y p  Geindre, P. Audebert, A. Rousse, F. Fallies, J. C. Gauthier,
A. Mysyrowicz, A. Dos Santos, G. Hamoniaux, and A. Antonetti, Opt. Lett.
19(23), 1997-1999 (1994).

1095 D. Gennaro, Y. Sonnefraud, N. Verellen, P. Van Dorpe,
V. V. Moshchalkov, S. A. Maier, and R. F. Oulton, Nat. Commun. 5, 3748
(2014).

11%p Bowlan and R. Trebino, U.S. patent 8,953,166 (10 February 2015).

1. Cohen, P. Bowlan, V. Chauhan, and R. Trebino, Opt. Express 18(7),
6583-6597 (2010).

112), Cohen, P. Bowlan, V. Chauhan, P. Vaughan, and R. Trebino, Opt. Express
18(24), 24451-24460 (2010).

TUTORIAL scitation.org/journalljap

"3]. Cohen, P. Bowlan, and R. Trebino, IEEE J. Sel. Top. Quantum Electron.
18(1), 218-227 (2012).

1145, Cohen, P. Bowlan, V. Chauhan, P. Vaughan, and R. Trebino, Opt.
Commun. 284, 3785-3794 (2011).

115C Taconis and I. A. Walmsley, Opt. Lett. 23(10), 792-794 (1998).

18T, Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle,
R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B Lasers Opt. 99(1), 7-12
(2010).

7M. Takeda, H. Ina, and S. Kobayashi, J. Opt. Soc. Am. 72(1), 156 (1982).
1185 1. Hahn, Hilbert Transforms in Signal Processing (Artech House, Boston,
1996).

"9], Bethge and G. Steinmeyer, Rev. Sci. Instrum. 79, 073102 (2008).

120G, Stibenz and G. Steinmeyer, Rev. Sci. Instrum. 77, 073105 (2006).

121p Baum, S. Lochbrunner, and E. Riedle, Opt. Lett. 29(2), 210-212 (2004).
22T Witting, D. R. Austin, and L. A. Walmsley, Opt. Lett. 34(9), 881 (2009).
23] R, Birge, R. Ell, and F. X. Kirtner, Opt. Lett. 31(13), 2063-2065 (2006).
124E M. Kosik, A. S. Radunsky, I. A. Walmsley, and C. Dorrer, Opt. Lett. 30(3),
326 (2005).

1255, Akturk, X. Gu, P. Bowlan, and R. Trebino, J. Opt. 12, 093001 (2010).

1267 Bor and Z. L. Horvath, Opt. Commun. 94(4), 249-258 (1992).

1277 L. Horvath and Z. Bor, Opt. Commun. 100(1-4), 6-12 (1993).

1287 1. Horvéth and Z. Bor, Opt. Commun. 108(4-6), 333-342 (1994).

1297 1. Horvath, K. Osvay, and Z. Bor, Opt. Commun. 111(5-6), 478-482
(1994).

1300, Kempe and W. Rudolph, Opt. Lett. 18, 137-139 (1993).

T3TM. Kempe and W. Rudolph, Phys. Rev. A 48(6), 4721-4729 (1993).

1324, Fuchs, U. D. Zeitner, and A. Tiinnermann, Opt. Express. 13(10),
3852-3861 (2005).

1337, Tanabe, H. Tanabe, Y. Teramura, and E. Kannari, J. Opt. Soc. Am. B
19(11), 2795-2802 (2002).

134Y. Teramura, M. Suekuni, and F. Kannari, J. Opt. A Pure Appl. Opt. 2(1),
21-26 (2000).

1357, Bor, J. Mod. Opt. 35(12), 1907-1918 (1988).

136 A, Federico and O. Martinez, Opt. Commun. 91(1), 104-110 (1992).
137p_Bowlan and R. Trebino, J. Opt. Soc. Am. B 27(11), 2322-2327 (2010).
138D, Meshulach, D. Yelin, and Y. Silberberg, J. Opt. Soc. Am. B 14(8),
2095-2098 (1997).

1397, Borzsonyi, A. P. Kovics, M. Gorbe, and K. Osvay, Opt. Commun.
281(11), 3051-3061 (2008).

140D 7. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan,
and B. Chatel, Nat. Commun. 2, 447 (2011).

141p. Bowlan, H. Valtna-Lukner, M. Lohmus, P. Piksarv, P. Saari, and
R. Trebino, Opt. Lett. 34(15), 2276-2278 (2009).

142\ Lshmus, P. Bowlan, R. Trebino, H. Valtna-Lukner, P. Piksarv, and
P. Saari, Lith J. Phys. 50(1), 69-74 (2010).

143p  Saari, P. Bowlan, H. Valtna-Lukner, M. Lohmus, P. Piksarv, and
R. Trebino, Laser Phys. 20(5), 948-953 (2010).

144p. piksarv, H. Valtna-Lukner, A. Valdmann, M. Lohmus, R. Matt, and
P. Saari, Opt. Express 20(15), 17220-17229 (2012).

T45g, Betzig, M. Isaacson, and A. Lewis, Appl. Phys. Lett. 51(25), 2088-2090
(1987).

146, Trigardh and H. Gersen, Opt. Express 21(14), 16629-16638 (2013).

147p, Bowlan and R. Trebino, J. Opt. Soc. Am. B 29(2), 244-248 (2012).
148p_Saari and K. Reivelt, Phys. Rev. Lett. 79(21), 4135 (1997).

1491 Alexeev, K. Kim, and H. Milchberg, Phys. Rev. Lett. 88(7), 073901 (2002).
1501y Valtna-Lukner, P. Bowlan, M. Léhmus, P. Piksarv, R. Trebino, and
P. Saari, Opt. Express 17(17), 14948-14955 (2009).

151p, Saari, P. Bowlan, H. Valtna-Lukner, M. Lohmus, P. Piksarv, and
R. Trebino, Opt. Express 18(11), 11083 (2010).

152 Valdmann, P. Piksarv, H. Valtna-Lukner, and P. Saari, Opt. Lett. 39(7),
1877-1880 (2014).

153A. Valdmann, P. Piksarv, H. Valtna-Lukner, and P. Saari, J. Opt. 20(9),
095605 (2018).

J. Appl. Phys. 128, 171103 (2020); doi: 10.1063/5.0022552
Published under license by AIP Publishing.

128, 171103-42


https://doi.org/10.1364/OL.37.002874
https://doi.org/10.1364/OL.44.003142
https://doi.org/10.1002/(SICI)1521-3951(199803)206:1%3C119::AID-PSSB119%3E3.0.CO;2-X
https://doi.org/10.1364/OL.25.001478
https://doi.org/10.1364/OL.22.000721
https://doi.org/10.1038/srep06670
https://doi.org/10.1364/OL.26.000932
https://doi.org/10.1016/S0030-4018(00)01077-4
https://doi.org/10.1016/0030-4018(71)90021-6
https://doi.org/10.1364/OE.11.000491
https://doi.org/10.1364/OE.11.000068
https://doi.org/10.1364/OE.18.017484
https://doi.org/10.1364/OL.29.001025
https://doi.org/10.1007/s11207-005-5782-z
https://doi.org/10.1364/OL.19.000575
https://doi.org/10.1364/JOSAB.30.002781
https://doi.org/10.1364/JOSAB.29.001237
https://doi.org/10.1364/JOSAB.29.001889
https://doi.org/10.1088/0335-7368/4/4/301
https://doi.org/10.1364/OL.21.000884
https://doi.org/10.1364/OE.20.017880
https://doi.org/10.1364/JOSAB.17.001795
https://doi.org/10.1364/OE.16.013663
https://doi.org/10.1364/JOSAB.25.000A81
https://doi.org/10.1364/JOSAB.25.000A81
https://doi.org/10.1364/OE.14.011892
https://doi.org/10.1364/OE.15.010219
https://doi.org/10.1364/OL.19.001997
https://doi.org/10.1038/ncomms4748
https://doi.org/10.1364/OE.18.006583
https://doi.org/10.1364/OE.18.024451
https://doi.org/10.1109/JSTQE.2011.2107314
https://doi.org/10.1016/j.optcom.2011.02.078
https://doi.org/10.1016/j.optcom.2011.02.078
https://doi.org/10.1364/OL.23.000792
https://doi.org/10.1007/s00340-010-3916-y
https://doi.org/10.1364/JOSA.72.000156
https://doi.org/10.1063/1.2938399
https://doi.org/10.1063/1.2221511
https://doi.org/10.1364/OL.29.000210
https://doi.org/10.1364/OL.34.000881
https://doi.org/10.1364/OL.31.002063
https://doi.org/10.1364/OL.30.000326
https://doi.org/10.1088/2040-8978/12/9/093001
https://doi.org/10.1016/0030-4018(92)90022-J
https://doi.org/10.1016/0030-4018(93)90547-I
https://doi.org/10.1016/0030-4018(94)90672-6
https://doi.org/10.1016/0030-4018(94)90522-3
https://doi.org/10.1364/OL.18.000137
https://doi.org/10.1103/PhysRevA.48.4721
https://doi.org/10.1364/OPEX.13.003852
https://doi.org/10.1364/JOSAB.19.002795
https://doi.org/10.1088/1464-4258/2/1/304
https://doi.org/10.1080/713822325
https://doi.org/10.1016/0030-4018(92)90110-D
https://doi.org/10.1364/JOSAB.27.002322
https://doi.org/10.1364/JOSAB.14.002095
https://doi.org/10.1016/j.optcom.2008.02.002
https://doi.org/10.1038/ncomms1434
https://doi.org/10.1364/OL.34.002276
https://doi.org/10.3952/lithjphys.50105
https://doi.org/10.1134/S1054660X10090021
https://doi.org/10.1364/OE.20.017220
https://doi.org/10.1063/1.98956
https://doi.org/10.1364/OE.21.016629
https://doi.org/10.1364/JOSAB.29.000244
https://doi.org/10.1103/PhysRevLett.79.4135
https://doi.org/10.1103/PhysRevLett.88.073901
https://doi.org/10.1364/OE.17.014948
https://doi.org/10.1364/OE.18.011083
https://doi.org/10.1364/OL.39.001877
https://doi.org/10.1088/2040-8986/aad700
https://aip.scitation.org/journal/jap

Journal of

Applied Physics

15"]. Extermann, L. Bonacina, F. Courvoisier, D. Kiselev, Y. Mugnier, R. Le

Dantec, C. Galez, and J.-P. Wolf, Opt. Express 16(14), 10405-10411 (2008).
155p, Gabolde and R. Trebino, Opt. Express 14(23), 11460 (2006).
156p_Gabolde and R. Trebino, J. Opt. Soc. Am. B 25(6), A25-A33 (2008).

1577. Guang, M. Rhodes, and R. Trebino, Appl. Opt. 54(22), 6640-6651 (2015).
158p 7hu, R. Jafari, T. Jones, and R. Trebino, Opt. Express 25(20), 24015 (2017).
1897, Guang, M. Rhodes, M. Davis, and R. Trebino, J. Opt. Soc. Am. B 31(11),
2736-2743 (2014).

TUTORIAL scitation.org/journalljap

1607 Guang, M. Rhodes, and R. Trebino, J. Opt. Soc. Am. B 33(9), 1955-1962
(2016).

T6'M. Rhodes, Z. Guang, J. Pease, and R. Trebino, Appl. Opt. 56(11),
3024-3034 (2017).

162p_ Bowlan, “Measuring the spatiotemporal electric field of ultrashort pulses
with high spatial and spectral resolution,” Ph.D. thesis (Georgia Institute of
Technology, 2009), available at https://smartech.gatech.edu/handle/1853/28188.
163] Hyyti, E. Escoto, G. Steinmeyer, and T. Witting, Opt. Lett. 42, 2185 (2017).

J. Appl. Phys. 128, 171103 (2020); doi: 10.1063/5.0022552
Published under license by AIP Publishing.

128, 171103-43


https://doi.org/10.1364/OE.16.010405
https://doi.org/10.1364/OE.14.011460
https://doi.org/10.1364/JOSAB.25.000A25
https://doi.org/10.1364/AO.54.006640
https://doi.org/10.1364/OE.25.024015
https://doi.org/10.1364/JOSAB.31.002736
https://doi.org/10.1364/JOSAB.33.001955
https://doi.org/10.1364/AO.56.003024
https://smartech.gatech.edu/handle/1853/28188
https://doi.org/10.1364/OL.42.002185
https://aip.scitation.org/journal/jap

	Highly reliable measurement of ultrashort laser pulses
	I. INTRODUCTION
	II. MEASURING THE SPECTRUM
	A. The spectrum and one-dimensional phase retrieval

	III. THE INTENSITY AUTOCORRELATION
	A. The autocorrelation and one-dimensional phase retrieval
	B. Autocorrelations of complicated pulses and noisy pulse trains
	C. The autocorrelation and spectrum—In combination
	D. Interferometric autocorrelation
	E. Third-order autocorrelations
	F. Cross correlation
	G. Autocorrelation conclusions

	IV. THE TIME–FREQUENCY DOMAIN
	A. Frequency-resolved optical gating (FROG)
	B. FROG and the two-dimensional phase-retrieval problem
	1. The FROG algorithm

	C. FROG beam geometries
	D. Properties of FROG
	1. Single-shot FROG
	2. Near-single-cycle pulse measurement

	E. FROG and the coherent artifact
	F. Cross correlation FROG (XFROG)
	G. Very simple FROG: GRENOUILLE
	H. Measuring two pulses simultaneously
	I. Other self-referenced methods

	V. SPECTRAL INTERFEROMETRY
	A. Advantages and disadvantages of spectral interferometry
	B. Crossed-beam spectral interferometry
	C. Practical measurement of weak and complicated pulses: SEA TADPOLE
	1. Measuring very complicated pulses in time: MUD TADPOLE
	2. Single-shot MUD TADPOLE


	VI. SPECTRAL PHASE INTERFEROMETRY FOR DIRECT ELECTRIC-FIELD RECONSTRUCTION (SPIDER)
	VII. SPATIOTEMPORAL PULSE MEASUREMENT
	A. Spatially resolved spectral interferometry: One spatial dimension
	B. Fiber-based scanning spatiotemporal pulse measurement: Two and three spatial dimensions
	C. Spatiotemporal measurement examples
	D. Other spatiotemporal-measurement methods
	E. Spatiotemporal measurement on a single shot: STRIPED FISH

	VIII. CONCLUSIONS
	DATA AVAILABILITY
	References


