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All‑fiber ultrafast amplifier 
at 1.9 μm based on thulium‑doped 
normal dispersion fiber and LMA 
fiber compressor
Vasilii Voropaev1, Daniil Batov1, Andrey Voronets1, Dmitrii Vlasov1, Rana Jafari2, 
Aleksandr Donodin3, Mikhail Tarabrin1,4, Rick Trebino2 & Vladimir Lazarev1*

The duration reduction and the peak power increase of ultrashort pulses generated by all‑fiber 
sources at a wavelength of 1.9µm are urgent tasks. Finding an effective and easy way to improve 
these characteristics of ultrafast lasers can allow a broad implementation of wideband coherent 
supercontinuum sources in the mid‑IR range required for various applications. As an alternative 
approach to sub‑100 fs pulse generation, we present an ultrafast all‑fiber amplifier based on a normal‑
dispersion germanosilicate thulium‑doped active fiber and a large‑mode‑area silica‑fiber compressor. 
The output pulses have the following characteristics: the central wavelength of 1.9µm , the repetition 
rate of 23.8 MHz, the energy per pulse period of 25 nJ, the average power of 600 mW, and a random 
output polarization. The pulse intensity and phase profiles were measured via the second‑harmonic‑
generation frequency‑resolved optical gating technique for a linearly polarized pulse. The linearly 
polarized pulse has a duration of 71 fs and a peak power of 128.7 kW. The maximum estimated peak 
power for all polarizations is 220 kW. The dynamics of ultrashort‑pulse propagation in the amplifier 
were analyzed using numerical simulations.

Ultrafast thulium-doped fiber-laser sources at the wavelength of 1.9µm have attracted great interest due to their 
wide range of potential  applications1, including remote sensing, precision frequency-domain  spectroscopy2, 
and breath  analysis3. Such systems are compact, reliable, easy to align, and environmentally stable when using 
polarization-maintaining fibers. Most of the aforementioned applications require a coherent supercontinuum 
in the mid-IR region that is conveniently achieved using ultrafast Tm-doped fiber  lasers4,5. For the generation 
of broadband coherent supercontinua, nonlinear media with anomalous group-velocity dispersion (GVD) are 
 desirable4,6. However, the product of the energy and duration of the pulses should not exceed a certain value, 
otherwise the process of modulation instability precedes a strong broadening of the spectrum and degrades its 
temporal  coherence6,7. Thus, one of the key factors for the bandwidth increase of the coherent supercontinuum 
achieved in nonlinear media with anomalous GVD is the pulse duration decrease.

Recently, significant progress has occurred in the development of ultrafast fiber-laser systems at 1.9µm 
with pulse durations less than 150 fs and peak powers higher than 10  kW4,8–11 and commonly used to generate 
broadband coherent supercontinua. In thulium-doped fiber-laser systems, various techniques and their combina-
tions are used to achieve such pulse characteristics, including the use of large-mode-area (LMA) active  fibers8, 
nonlinear pulse  compression9–11, the chirped-pulse amplification  technique4,10,11, etc. In some works, pulses with 
such parameters are achieved without using an  amplifier12,13. Extremely high values of peak power (MW-GW 
level) can be obtained by using fibers with very large mode areas (large-pitch  fibers14) and nonlinear compression 
in gas-filled hollow-core  fibers15,16. In the supplementary materials (Fig. 1) we have given a comparison of the 
pulse characteristics of the mentioned works together with the design features. Another well-known approach for 
obtaining such pulse characteristics is to amplify pulses in fibers with normal GVD, leading to a significant spec-
tral and temporal broadening of a pulse while maintaining the pulse  uniformity17. Then pulses are compressed in 
fibers with anomalous GVD to achieve low duration and high peak power characteristics. However, very few fiber 
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laser systems based on thulium-doped normal dispersion fibers have been experimentally  embodied18,19. These 
setups feature durations of more than 600 fs, which are less promising for coherent supercontinuum generation.

In this work, for the first time to the best of our knowledge, we present a system for ultrashort pulse amplifica-
tion and compression based on the combination of an active germanosilicate thulium-doped fiber with a normal 
GVD and an LMA fiber with an anomalous GVD. Using numerical simulations, the dynamics of pulses inside the 
amplifier are analyzed and the use of a pulse stretcher before the amplifier is justified. The use of a germanosilicate 
thulium-doped fiber with normal GVD as an active medium significantly expands the pulse spectrum during 
the amplification process. This broadening helps to achieve a shorter pulse duration than that fundamentally 
achievable at the input of the amplifier. The pulse undergoes compression in the LMA fiber, resulting in a group 
of pulses with a minimal main-pulse duration of 71 fs. An LMA fiber has a lower nonlinear coefficient compared 
to standard single-mode fiber, which helps to reduce nonlinear distortion of the pulse and to maintain the high 
peak power of the achieved pulse (220 kW). The pulse intensity-and-phase profile was measured via the second-
harmonic-generation (SHG) frequency-resolved optical gating (FROG)20.

Experimental setup
Figure 1a shows the schematic of the amplifier with the lengths of all relevant fibers. The GVD as a function of 
wavelength for all fibers (Fig. 1b), except the LMA, was measured by the method described  in21. The depend-
ence of the amplifier output power on the pump power is shown in Fig. 1c. The maximum output power was 
approximately 1 W at 6 W pump power.

The master oscillator (MO) was the stretched-pulse Tm-doped all-fiber ring laser with hybrid mode-locking, 
a detailed description of which is given in the  work22. The nonlinear polarization evolution and single-wall car-
bon nanotubes were used as the mode-locking mechanisms. The average power of the MO in the mode-locking 
regime was 6 mW. The pulse repetition rate was 23.8 MHz. The spectrum and pulse autocorrelation trace from 
the MO were measured after the FC/APC connector after the isolator (See Fig. 1a) and are shown in the section 
of “Experimental results”. The maximum intensity wavelength was 1899.5 nm, the spectral full width at half 
maximum (FWHM) was 21.66 nm. The autocorrelation trace had a Gaussian shape with FWHM of 465 fs, which 
corresponds to a 328.8 fs FWHM of the pulse.

A polarization-independent isolator (ISO) was used to prevent back reflections to the MO cavity. FC/APC 
optical adapters were used for the connection between different parts of the amplifier. The coupler (95/5) directed 
5% of the radiation to the photodetector for controlling the generation regime and had a 5% of losses. The 
3.09 m-long-fiber with a high concentration of germanium ( �n ≈ 0.0324 , 30 wt% germanium oxide in the 
core, core diameter is 2.2µm ) (Hi-Ge) with the GVD value of 108 ps2/km at 1.9µm was used to obtain stretched 
pulses with a positive chirp before amplification. According to the simulation, the use of this fiber allows an 
increase in the peak power and reduces the pulse pedestal. A theoretical comparison with the case without this 
fiber is given in the “Simulation results” section. Hi-Ge-SMF splicing losses are about 10%. The mechanical 
polarization controller was placed after the Hi-Ge fiber because the propagation process strongly depends on 
the radiation polarization state, presumably due to the dependence of the nonlinear refractive index on the 
polarization state of the  radiation23.

The CW pump source at a wavelength of 1550 nm (Erbium-Ytterbium-doped fiber amplifier of the laser 
diode) was connected to the wavelength-division multiplexer (WDM) to inject pumping into the active fiber. 
The amplifier was based on a normal dispersion step-index ( �n ≈ 0.045 , core diameter is 2.2µm ) Tm3+-doped 
germanosilicate (0.9 wt% thulium, 36 wt% GeO2 ) fiber with a normal GVD of 130.55 ps2/km at 1900 nm. The 
length of the Tm3+-doped fiber was 2.12 m and chosen so that ≈ 98% of the pump power was absorbed.

The LMA pigtail ( �n ≈ 0.0022 , core diameter of 20µm ) was used to compress the pulses. The calculated 
GVD of the LMA fiber is −79.58 ps2/km at 1900 nm. The LMA fiber is a PANDA-type fiber, but it did not work 
in the polarization-maintaining regime in our experiments due to random polarization at the fiber input. This 

Figure 1.  (a) Schematic of the thulium-doped all-fiber amplifier. All the unspecified segments of fibers 
are SMF-28 fibers. MO master oscillator, ISO isolator, OC coupler, Hi-Ge fiber with a high concentration of 
germanium oxide, PC polarization controller, WDM wavelength-division multiplexer, Tm thulium-doped 
germanosilicate fiber, LMA large-mode-area silica fiber; (b) Group velocity dispersion (GVD) as a function of 
wavelength for the SMF-28 (black curve), Tm-doped fiber (red dash-dot curve), Hi-Ge (orange dash curve) and 
LMA (green dot curve); (c) The dependence of output power on pump power where red dots are measured data 
and the black curve is a linear fit.
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type was not chosen on purpose, but due to the availability of only such a fiber. The splice between the LMA and 
the thulium-doped fibers introduces losses due to the difference in mode-field diameters (20.6 and 5.06µm ), 
experimentally estimated to be 30%. The length of the LMA fiber (2.37 m) was selected experimentally to achieve 
the shortest pulse duration with 600 mW average output power. The justification of the average output power 
will be explained based on the simulation results. All used fibers, except SMF-28, were manufactured at Dianov 
Fiber Optics Research Center and Devyatykh Institute of Chemistry of High-Purity Substances of the Russian 
Academy of Sciences.

Simulation results
Using the numerical model described in the “Methods” section, we calculated the dynamics of the pulse param-
eters in the amplifier. These parameters are temporal and spectral FWHM, peak and average powers of the pulse 
or pulse group (if several pulses are formed) propagating in the amplifier (Fig.2a) with and without Hi-Ge fiber 
with 586 mW output average power.

The first section of the amplifier consists of an SMF-28 fiber of passive components (isolator, coupler), where 
the pulse compresses in the time domain, the spectral FWHM increases slightly, the peak power increases, and 
the average power decreases due to the loss of components. The pulse undergoes a slight spectral broadening 
from 21.3 to 26.5 nm while propagating in Hi-Ge fiber, the pulse duration increases from 412 fs to 4.66 ps, and 
the peak power decreases from 127 to 12 W. The average output power at the Hi-Ge output is reduced to 1.1 mW, 
mainly due to losses in the splices and connectors. The measurement of the pulse duration experimentally at this 
point is difficult due to the product of the peak power and the average power ( 0.0132W2 ) being less than the sen-
sitivity threshold of the used autocorrelator ( 1W2 ). In the SMF section of WDM before the active fiber, the pulse 
duration in the case with Hi-Ge fiber decreases to 3.6 ps, and in the case without Hi-Ge fiber, the pulse duration 
decreases from 412 to 350 fs, while the spectral FWHM and peak power are almost unchanged in both cases.

In the active fiber in the case with the Hi-Ge fiber, the pulse duration increases to 10.4 ps, and at the same 
time, due to the action of self-phase modulation the spectrum is broadened to 75 nm. In the case without a 
Hi-Ge fiber at the initial stage of propagation, the pulse duration slightly decreases with narrowing of the spec-
trum. Then there is an increase in the pulse duration and the spectral FWHM. At the output of the active fiber, 
the FWHM of the spectrum is 126 nm, and the pulse duration is 14.45 ps. In both cases, the average power at 
the end of the active fiber is ≈ 840mW.

During pulse compression, a group of pulses is formed in the LMA fiber due to the action of nonlinear effects 
and higher-order dispersion. We determine the spectral width and duration of the pulse group by the full width 
at half of the maximum amplitude of the spectrum and intensity. Near the compression point, the dependence 
of the pulse group duration and spectral width has rapid oscillations and, in some places, discontinuous changes. 
This behavior is associated with a change in the amplitude of pulses in the group, when the amplitude of one 
of the pulses becomes slightly bigger than the half amplitude of the main pulse, there is a sharp increase in the 

Figure 2.  (a) Simulated evolution of temporal ( �τ ) and spectral ( �� ) FWHM, peak ( Pp ) and average ( Pav ) 
power of the pulse or pulse group (if several pulses are formed) in the amplifier with Hi-Ge (black curve) and 
without Hi-Ge fiber (red curve); Calculated pulse intensity profiles (b) for case with Hi-Ge fiber and without 
it with the average output power of 586 mW at the compression point; (c) Simulated the pulse durations ( �τ ), 
comparison of compression lengths (Lc ), peak powers ( Pp ), and the ratios of the energy contained in the main 
pulse to the total energy per pulse period ( KE = Ep/Et ) for cases with Hi-Ge fiber (black dots) and without 
Hi-Ge fiber (red dots) at compression points at different average output powers.
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duration of the pulse group. More detailed illustrations of the pulse compression dynamics in the two amplifier 
schematics are given in the supplementary materials (Figs. 2–4). The pulse duration in LMA fiber has several 
minima in both cases. The point with the minimum pulse duration is taken as the compression point in this paper. 
So, the compression length in the case without a pulse stretcher is 2.46 m, and in the case using a pulse stretcher 
is 3.12 m. The pulse duration at the compression point in the case without a pulse stretcher is 49 fs, and in the 
case using a pulse stretcher it is 53.8 fs. A comparison of the pulse intensity profile at the compression point for 
the two cases is shown in Fig. 2b at an output power of 586 mW. As a result of compression in the LMA fiber, a 
group of pulses is formed, consisting of the main pulse and several pulses with lower amplitude. The pulse peak 
power at the compression point is 236 kW with the stretcher and 213 kW without one.

Figure 2c shows a comparison of the following parameters: compression lengths, the pulse durations, peak 
powers, and the ratios of the energy contained in the main pulse to the total energy per pulse period ( KE ) for 
two cases (with and without Hi-Ge) at compression points for different output radiation powers. As the output 
power increases, the main pulse duration and compression length decrease, and the peak power of the main 
pulse increases. Also, with an increase in the average output power, the ratio of the main pulse energy to the 
total energy decreases. Taking into account that the peak power of the pulse and the KE according to the calcula-
tions are higher in the case with Hi-Ge fiber, we decided to carry out all experiments using this fiber. Moreover, 
according to simulations, with 600 mW output average power, about 55% of the radiation energy forms the 
main pulse with 236 kW peak power. Thus, we decided to experimentally investigate the compression point at 
an output power of about 600 mW.

Experimental results
First, we measured the characteristics immediately after the active fiber. As the pulse propagates in the active fiber, 
its duration increases, and the spectrum significantly  broadens24. Figures 3a, b show the measured broadening of 
the spectrum and an increase in the pulse duration at the output of the active fiber with an increase in the pump 
power. Thus, at a pump power of ≈ 4W at the output of the active fiber, the spectrum had FWHM of 92 nm and 
average power was 955 mW, and at a pump power of ≈ 7W , spectral FWHM was 114 nm and average power 
was 1.55  W24. The duration of the autocorrelation was 8.2 ps with an output power of about 955 mW, which is 
less than that obtained in the simulation.

Next, we spliced the LMA fiber and experimentally found the compression length at an output power of 
600 mW, which was 2.37 m. Compression length differs from the calculated one by 30% (3.12 m). The measured 
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Figure 3.  Spectra (a) and autocorrelation traces (b) measured at the output of the active fiber at different 
pump powers; Spectra (c) and intensity autocorrelation traces of the pulses (d); Black curves—from master-
oscillator; Red and Blue curves—from the amplifier at 600 mW output power. Blue curve on the graph (b)—
autocorrelation trace of long pulse from amplifier achieved by polarization controller (PC) adjustment.
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amplifier characteristics with an output power of 600 mW are shown in Fig. 3c, d in comparison with the char-
acteristics of the master oscillator (black curves). The spectrum and autocorrelation trace of the pulse from the 
amplifier (Fig. 3a, b, red and blue curves) were measured at the end of the LMA fiber. At various settings of the 
PC (See Fig. 1a), autocorrelation traces of the output pulses from the amplifier had FWHM in the range from 
93 fs (Fig. 3d, red curve) to 1800 fs (Fig. 3d, blue curve). The pulse changed at the various PC settings, probably 
due to the difference between nonlinear refractive indices ( n2 ) of fibers for the various polarization states (see 
“Discussion” section)23. The shortest pulses had a maximum intensity wavelength of 1902.7 nm, with a spectral 
FWHM of 83.4 nm (Fig. 3c, red curve). The minimum autocorrelation FWHM was 93 fs which corresponds to 
65.7 fs pulse FWHM (assuming a Gaussian shape). However, the actual shortest pulse had a much more com-
plex shape than a Gaussian, so it was necessary to measure the true temporal intensity profile using FROG to 
estimate the peak power and clarify the nature of the pulse pedestal of the autocorrelation trace associated with 
pre-pulses and post-pulses.

We measured the SHG FROG trace together with the autocorrelation and spectrum for horizontally polarized 
radiation with 350 mW average power. The vertical polarization state had an average power of 250 mW. To meas-
ure the FROG trace, we used a non-collinear geometry setup based on SHG in a BBO crystal with a thickness 
of 0.6 mm. Figure 4 shows the FROG measurement of the compressed pulses with the shortest duration at an 
average output power of 600 mW. The measured FROG trace (Fig. 4a) has the following parameters: 2048× 175 
points, delay resolution 1.27 fs, wavelength resolution 0.4 nm, delay range 2.6 ps, wavelength range 70 nm, the 
center wavelength 950 nm. The retrieved FROG trace (Fig. 4b) has 256× 256 points. The delay axis extends in 
the range from −2916.4 to 2893.6 fs. The frequency axis is in the range from 293.4 to 337.12 THz, which cor-
responds to a wavelength range from 889.9 to 1022 nm.

The retrieved intensity pulse profile and corresponding phase are shown in Fig. 4d. Satellite pulses can be 
seen near the main pulse, associated with the excess accumulated nonlinearity by the pulse in the amplifier and 
also probably with the initially existing subpulses, which appear as small wings in the input autocorrelation 
and discussed in our previous  work22. The center peak has a 71 fs duration and contains 64.5% (9.4 nJ) of the 
energy per pulse period (14.6 nJ) for the horizontal polarization state, and the corresponding pulse peak power 
is 128.7 kW. If we assume that the vertical polarization of the pulse has the same temporal intensity profile as 
the horizontal polarization of the pulse, then the peak power of the pulse with all polarizations can be estimated 
as 220 kW. The temporal phase has a clear quadratic component, indicating that additional compression to a 
shorter pulse could be possible, although much of this curve occurs for low-intensity satellites, which do not 
contribute to the FWHM pulse length.

Figure 4e shows the difference between measured and retrieved FROG traces. There is more structure in the 
retrieved trace than the measured trace. This indicates slight shot-to-shot pulse variations in the pulse intensity 
and/or phase vs. time, which wash out structure in measured FROG  traces25,26. Due to the many more points in 
the FROG trace than the pulse, the FROG algorithm is able to see through the smearing. It accomplishes this 

Figure 4.  Characteristics of the shortest horizontal polarized pulses with the power of 350 mW at the amplifier 
output at an average output power of 600 mW for all polarization states. Measured FROG trace (a), retrieved 
FROG trace (b), retrieved pulse intensity versus time (d, black), retrieved pulse phase versus time (d, red), 
the difference between measured and retrieved traces (e), retrieved autocorrelation (c, red dash), measured 
autocorrelation trace (c, black) and autocorrelation trace obtained by integrating of measured FROG trace (c, 
blue), retrieved spectrum (f, red dash), spectral phase (f, blue) and the spectrum measured by OSA (f, black). 
The x-axes in figures (a) and (b) are the same as in (c) and (d).
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by averaging over many different pulses. The result is that it yields a typical pulse in the train. Other pulses in 
the train and their corresponding FROG traces will have a similar structure but displaced slightly in time and/
or frequency.

To relate the FROG measurements to an older, less detailed, but more familiar, measure, we compare autocor-
relation traces (Fig. 4c) of the pulses. The FROG-measured autocorrelation trace, obtained by integrating the 
measured FROG trace with respect to wavelength, and retrieved autocorrelation traces show a good agreement 
in shape. The autocorrelation duration mismatch is 4.3%, the Pearson correlation coefficient between the two 
autocorrelation traces is 0.98. Slight differences between the mathematically equivalent measured autocorrela-
tion trace and the autocorrelation trace obtained by integrating the measured FROG trace over all frequencies 
are due to random noise. Differences between the FROG-retrieved pulse’s autocorrelation and the other two 
autocorrelation traces are partly due to the rough nature of the autocorrelation as a measure of a pulse. They are 
also partly due to FROG’s ability to yield a typical pulse, rather than an average pulse (to understand this, note 
that the average spectral phase yields only the coherent artifact and so is highly undesirable). For a more detailed 
discussion of this interesting issue, which is beyond the scope of this publication, we refer the reader to Ref.27.

Finally, we also compare the FROG-retrieved spectrum with that measured directly by a Fourier-transform 
spectrometer (FTS) (Fig. 4f). These two spectra are also close. The Pearson correlation coefficient between meas-
ured and retrieved spectrum graphs is 0.91. Small discrepancies are due mainly to noise in the FTS at delays for 
which the pulse intensity was clearly zero and so yielded spurious additional spectral fine structure. The linear 
slope in the spectral phase is due to the slightly off-center time of the pulse peak (See Fig. 4c).

Discussion
In this discussion, we would like to draw the reader’s attention to the assumptions used in the numerical model, 
as well as to show the discrepancies between the experiment and the numerical simulation. A model for one 
polarization of radiation was used in the calculations, which in the general case is incorrect when considering 
fibers in which radiation does not maintain a polarization state. For a more accurate description of the radiation 
propagation process, it is necessary to solve coupled equations for two orthogonal polarization  states28,29 that 
require taking into account the birefringence of fibers, which needs to be measured. Also, the propagation process 
is highly dependent on the radiation polarization settings, which adds a lot of variabilities in numerical simula-
tions and in performing experiments. Various fluctuations of the environment, vibration, humidity, temperature 
lead to a change in the birefringence of the fibers and, as a consequence, can change the generation mode of both 
the laser and the dynamics of pulse propagation in the amplifier. The study of this system for complete pulse 
polarization both experimentally and theoretically is beyond the scope of this study. Also, the Raman response 
of germanosilicate fibers is taken the same as for silica fibers, which also introduces errors into the model. For a 
more accurate description of the amplification in the active fiber, it is necessary to solve the balance equations.

Despite our model assumptions, the numerical results are generally in good agreement with the experiment. 
The simulation and experiment show a significant broadening of the pulse spectrum at the output of the active 
fiber with a simultaneous increase in the pulse duration. Thus, in the experiment at the output of the active fiber 
at a power output of 955 mW the spectral width was 92 nm, and the pulse autocorrelation duration was 8.2 ps. 
As a result of numerical simulation at a power output of 840 mW, the spectral width was 75 nm, and the pulse 
duration was 10.4 ps. As a result of pulse compression in the experiment in LMA fiber, the pulse duration was 
71 fs and the estimated peak power of 220 kW. As a result of simulation, the pulse at the compression point had 
a duration of 53.8 fs and a peak power of 236 kW. The compression length differs from the calculated one by 30% 
(3.12 m in the simulation versus 2.37 m in the experiment).

And last we make a few comments as to why the numerical simulation in our case showed a good correspond-
ence with the experiment. Birefringence of fibers and random polarization of radiation lead to two main effects. 
The first one is the rotation of the polarization ellipse, and its effect leads to different polarizations of pulses in 
the group, this effect is not considered in the paper, as it requires one to solve the coupled Nonlinear Schrodinger 
Equation (NLSE). The second effect is the change in the accumulated nonlinear phase shift by the pulse due to a 
difference of the nonlinear refractive index for different polarizations. Fig. 5a shows the autocorrelation functions 
at the output of the amplifier with Hi-Ge fiber at a compressor length of 3.1 m and an output power of 576 mW in 
the case where the active fiber nonlinear coefficient is equal to that calculated (see “Methods” section), and when 
it is greater or less than the calculated value by 10 percent. As is known, a change in polarization of radiation 
leads to a change in the nonlinear  coefficient23. The durations of autocorrelations change significantly with the 
nonlinear coefficient changes. Thus, we associate the good agreement between the experiment and the model with 
the nonlinear coefficient variations with polarization, which is selected by adjusting the polarization controllers 
at which the shortest pulse is formed at the amplifier output. The change in the calculated pulse autocorrelation 
functions correlates well with the experimental results (Fig. 3d) because a small change in the nonlinear coef-
ficient of the active fiber strongly affects the pulse compression process. There is no certainty if the NLSE can 
allow good agreement for another system, and for the general case of propagation in non-PM fibers, it is more 
precise to solve the coupled nonlinear Schrödinger equation. The NLSE allows us to investigate and track general 
pulse dynamics even in non-PM fiber. However, it cannot guarantee the perfect agreement with the experiment.

Also, we measured autocorrelations for two orthogonal polarizations of radiation in the case of a long pulse 
and a short one at polarization controller settings different from the case presented in the main part of the article. 
For the long pulse, the orthogonal autocorrelations were both long. For a short pulse, the orthogonal autocor-
relations were similar in duration (differing by 30 percent) and with a slightly different pedestal (Fig. 5b). At the 
same time, if we implement this amplifier with similar fibers with maintaining polarization, the description of 
the process without taking into account birefringence will already be more accurate.
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Conclusion
We demonstrated a system for amplification and compression of ultrashort pulses based on thulium-doped 
normal-dispersion germanosilicate fiber and the LMA silica-fiber compressor. The developed source generates a 
main pulse with small sub-pulses and has the following characteristics: the main pulse duration of 71 fs, the 
central wavelength of 1.9 µm , the repetition rate of 23.8 MHz, the energy per pulse period of 25 nJ, the average 
power of 600 mW, and the maximum estimated peak power of 220 kW. The dynamics of pulse propagation in 
the amplifier is analyzed by numerical simulations. As a result of the simulation, it was shown that the use of a 
stretcher before the active fiber allows increasing the peak power at the compression point and also reducing the 
energy contained in small subpulses. In addition, the achieved pulse formation was studied using a home-made 
FROG to determine a correspondence between temporal and spectral characteristics of the pulse. The developed 
system generates radiation with random polarization and the pulse formation and amplification strongly depend 
on the PCs settings. The resulting source is suitable for broadband coherent mid-IR supercontinuum generation 
in different nonlinear  media4,5. Like all ultrafast fiber systems with non-polarization maintaining fibers, this 
system is highly sensitive to external influences (temperature, vibration, pressure, etc.). The further optimization 
of the developed system can be conducted through the employment of polarization-maintaining fibers.

Methods
The generalized nonlinear Schrödinger equation in the frequency domain used to describe the ultrashort pulse 
propagation in fibers in the following  form30:

w h e r e  Ã′ = Ã(z,ω)exp(−L̂(ω)z)  ,  L̂(ω)  i s  t h e  l i n e a r  o p e r a t o r ,  g i v e n  b y 
L̂(ω) = i(β(ω)− β(ω0)− β1(ω0)[ω − ω0])− α(ω)/2 , α(ω) is the frequency dependent losses or gain, β(ω) 
is the propagation constant, β1(ω0) is the first derivative of the propagation constant, ω0 is the central angular 
frequency, Ã(z,ω) is the Fourier transform of the normalised amplitude A(z, T) that |A(z,T)|2 gives the instan-
taneous power in watts, γ = n2(ω0)ω0/cAeff (ω0) is the nonlinear coefficient, n2 is a nonlinear refractive index, 
c is the speed of light in vacuum, Aeff (ω0) is effective mode area, ω is the angular frequency, R(T ′) is the Raman 
response function, z is the distance in the waveguide, T = t − β1z is the time in a co-moving frame at the enve-
lope group velocity β−1

1  . Raman response function are defined  as30–32:

where fR represents the fractional contribution of the delayed Raman response to nonlinear polarization, �(t) is 
the Heaviside step function, δ(t) is the Dirac delta function, τ1 is the period of vibrations, τ2 is the dumping time 
of vibrations. We use τ1 = 12.2 fs , τ1 = 32.2 fs , fR = 0.1831. Differential equation (1) solved by the fourth order 
Runge-Kutta method using a modified code in Matlab written by J.C. Travers, M.H. Frosz and J.M.  Dudley30. 
The gain model of active fiber was used as in the  work22. The model uses the dispersion of the fibers shown in 
Fig. 3b. Nonlinear coefficients and effective mode areas at 1.9 µm for the fibers used in this work are presented 
in the Table 1. To calculate the nonlinear coefficient, the value of the nonlinear refractive index was used in 

(1)
∂Ã′

∂z
= i

γω

ω0
exp(−L̂(ω)z)F







A(z, t)

∞
�

−∞

R(T ′)|A(z,T − T ′)|2dT ′







,

(2)R(t) = (1− fR)δ(t)+ fRhR(t) = (1− fR)δ(t)+ fR
τ 21 + τ 22

τ1τ
2
2

exp(−t/τ2)sin(t/τ1)�(t),

Figure 5.  (a) Calculated autocorrelation functions of the pulse at the output of the amplifier with Hi-Ge fiber 
at the LMA fiber length of 3.14 m and the output power of 576 mW. The different color shows the graphs 
with the nonlinearity coefficient of the active fiber differing by ±10 % , which we attribute to the change in the 
polarization of the radiation before the active fiber. (b) Measured autocorrelation functions for two orthogonal 
polarizations of radiation in the case of a short pulse at polarization controller settings different from the case 
presented in the main part of the article.
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proportion to the concentration of germanium oxide in the  core33. The effective mode area of the fibers was 
calculated using the Lumerical software.

A pulse obtained from the model described in our previous work was used as the pulse input to the  amplifier22. 
The difference from the previous work is in the specified parameters of the fibers, which reduced only the maxi-
mum calculated average laser power by 2 times. In the simulation, the number of points in the time domain 
was 8192 along with the width of the time window of 60 ps. When the number of points was doubled, the peak 
pulse power and the duration of the main pulse changed by less than 1%. The step along the length of the fiber 
was 1 mm. With decreasing the step up to 0.1 mm, the peak power and duration of the pulse at the compression 
point changed by less than 0.0065%. To calculate the temporal and spectral FWHM, the calculated curves were 
approximated by splines into a grid with a number of points greater by a factor of 100.
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